
Journal of Vision (20??) 5, 1-? http://journalofvision.org/?/?/?/ 1 

doi: Received: February 4, 2012 ISSN 1534-7362 © 20?? ARVO 

A new spectrally sharpened sensor basis to predict col-
or naming, unique hues, and hue cancellation 

Javier Vazquez-Corral* 

Computer Science Department, Universitat Autònoma de 
Barcelona and Computer Vision Center, 08193, 

Cerdanyola del Vallès, Spain

J. Kevin O’Regan 

Laboratoire Psychologie de la Perception - CNRS UMR 
8158, Université Paris Descartes, 45 Rue des Saints 

Pères, 75006, Paris, France

Maria Vanrell 

Computer Science Department, Universitat Autònoma de 
Barcelona and Computer Vision Center, 08193, 

Cerdanyola del Vallès, Spain

Graham D. Finlayson* 
School of Computing Sciences, University of East Anglia, 

Norwich, NR4 7TJ, United Kingdom

 

When light is reflected off a surface, there is a linear relation between the three human photoreceptor responses to the 
incoming light and the three photoreceptor responses to the reflected light. Different colored surfaces have different such 
linear relations. Recently, Philipona and O'Regan showed that when this relation is singular in a mathematical sense, then 
the surface is perceived as having a highly nameable color. Furthermore, white light reflected by that surface is perceived 
as corresponding precisely to one of the four psychophysically measured unique hues. However, Philipona and O'Regan's 
approach seemed unrelated to classical psychophysical models of color constancy.  

In this paper we make this link. We begin by transforming cone sensors to spectrally sharpened counterparts. In sharp 
color space, illumination change can be modeled by simple von Kries type scalings of response values within each of the 
spectrally sharpened response channels. In this space, PO's linear relation is  captured by a simple Land-type color 
designator defined by dividing reflected light by incident light. This link between PO's theory and Land's notion of color 
designator gives the model biological plausibility. 

We then show that Philipona and O'Regan's singular surfaces are surfaces which are very close to activating only one or 
only two of such newly defined spectrally sharpened sensors, instead of the usual three. Closeness to zero is quantified in 
a new simplified measure of singularity which is also shown to relate to the chromaticness of colors. As in PO's original 
work, our new theory accounts of a large variety of psychophysical color data.  
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Introduction 
The human brain treats colors asymmetrically: as re-

gards colored lights, certain hues of red, green, yellow, 
and blue, the so-called “unique hues” (Valberg, 2001), are 
perceived as being more “pure” than other hues; as re-
gards colored surfaces, the well-known “World Color Sur-
vey” (WCS) shows that certain colors are considered more 
basic or prototypical or “focal” across different cultures 
(red, yellow, green, and blue being the four most fre-
quent) (Berlin & Kay, 1969), (Kay, 2005). 

Explanations for these facts cannot lie in the physical 
light spectra or reflectance properties, because these are 
continuous functions with no intrinsic asymmetries. 
Equally, appealing to the fact that there are three cone 
types does not in any obvious way by itself predict the 
experimentally observed asymmetries. Thus, explanations 
must be sought in neural (Parraga, Troscianko, & Tol-
hurst, 2002), environmental (Yendrikhovskij, 2001),  cul-
tural, or linguistic mechanisms (Kay & Regier, 2003). 

It seems at first sight that a plausible candidate for a 
neural mechanism might lie in the opponent color proc-
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essing carried out by the early visual system (Hering, 
1891), (Wyszecki & Stiles, 1982). However unfortunately 
the extremes of the red/green and blue/yellow axes pro-
posed in the opponent theory do not correspond to the 
four unique hues. In particular, the theory would predict 
that to appear as unique “green”, a light should only acti-
vate the red/green channel, and not the blue/yellow 
channel. Yet it is found that to appear uniquely green a 
light must contain some yellow. Likewise it is found that 
to appear uniquely yellow, some red must be mixed in; to 
appear uniquely blue, some green must be mixed in 
(Burns, Elsner, Pokorny, & Smith, 1984), (Cicerone, 
Krantz, & Larimer, 1975), (Kuehni, 2004) , (Mollon & 
Jordan, 1997), (Valberg, 2001) (Webster, Miyahara, 
Malkoc, & Raker, 2000),   (Wuerger, Atkinson, & Crop-
per, 2005). 

Perceptual saliency of colors is another mechanism 
that has been invoked, this time to explain the intercul-
tural data of the World Color Survey concerning the 
naming of surface colors. The idea is that speakers dis-
tribute color names over perceptual color space in a way 
to maximize the perceptual similarity between colors hav-
ing the same names, and to minimize the similarity be-
tween colors having different names (Kay & Regier, 
2003). Whereas this model does a reasonable job of ex-
plaining the boundaries between different color names, it 
provides no explanation for the exact hues which are con-
sidered to be “focal”. 

Recently, Philipona and O’Regan (from now on PO) 
(Philipona & O'Regan, 2006) defined a new approach for 
explaining the unique hues and intercultural World Col-
or Survey naming data. PO follow a very simple idea al-
ready implicit in the color literature: color should be con-
sidered to be the biological analogue of what physicists 
call surface reflectance. PO take the physicist’s notion of 
reflectance, and create a biological reflectance function 
which can be used by the brain with its three broad-band 
sensors. They calculate this biological reflectance function 
for a wide variety of surfaces and discover that certain 
surfaces have the mathematical property of being “singu-
lar”. What this means is that these surfaces take incoming 
light, which usually can vary in a 3-dimensional space de-
fined by L, M, and S cone activations, and transform it 
into light which varies only in either a 2- or in a 1-
dimensional subspace of the LMS activation space. Be-
cause singular surfaces reduce variability from three di-
mensions to two or one dimension, they can be said to 
display a simpler behaviour as concerns how they affect 
incoming light than the majority of surfaces. What is now 
extremely striking is that these singular surfaces turn out 
to be almost exactly the red, yellow, green, and blue sur-
faces most frequently observed to be focal. Furthermore, 
if these surfaces are illuminated by a canonical source of 
natural illumination (Illuminant D65), the hues of the 
resulting reflected light correspond accurately to the mo-
nochromatic lights widely considered to be “unique” in 
psychophysical experiments. 

A strength of the PO approach is that it provides 
these explanations for both naming data and unique hues 
without any parameter adjustments. Well-known results 
on hue cancellation and hue equilibrium (Chichilnisky & 
Wandell, 1999),  (Jameson & Hurvich, 1955) also fall out 
very exactly from the predicted unique hue data. 

A weakness of the PO approach up until now has 
been the fact that no clear link has been made with classi-
cal approaches in color psychophysics, physiology, or in 
artificial vision. In the present paper we remedy this by 
showing that the PO approach is closely related to the 
notion of spectral sharpening used in computational vi-
sion to obtain improved color constancy. The idea is that 
to characterize surface reflectivity in a way that is inde-
pendent of illuminant, it is advantageous to use, not the 
normal three cone sensors of the human eye, but “sharp-
ened” sensors which are linear combinations of the cone 
mechanisms. The sharp sensors allow us to define surface 
color “designators” similar to those suggested by Land in 
his retinex theory (Land, 1964) (color designators are the 
color response for a surface divided by the color response 
to white). The sharp designators defined by our approach 
have the property that they are much more independent 
of illumination than those defined in Land’s approach. 
Furthermore, our sharp color designators turn out to be 
essentially the same as the biological reflectances defined 
by PO. Importantly, to compute the sharp designator we 
do not need to know what reflectance we are looking at: 
we simply divide the sharpened sensor responses of the 
(unknown) surface by the sharpened sensor responses of 
white. This is in contradistinction to the original PO the-
ory where knowledge of the surface is required to calcu-
late the biological reflectance coefficients. Removing the 
requirement that “we know what we are looking at” is a 
significant contribution of this paper. 

An additional contribution of our paper is to im-
prove the measure of singularity used by PO. Our new 
measure provides an appealing, perceptually reasonable 
link to the notion of chromaticness, that is, the degree to 
which a light deviates from grey. We show that using our 
new measure of singularity, predictions of color naming 
and unique hues can be obtained that are at least as and 
possibly more precise than those obtained by PO. 

The paper is organized as follows. In section (2) we 
explain the biological model of PO. After this, in section 
(3) we define our model based on a set of sharp sensors 
and a new compact singularity index. This is followed by 
section (4) where we summarize the different results ob-
tained. 

  

Philipona and O’Regan biologi-
cal model 

PO’s biological model  (Philipona & O'Regan, 2006) 
is built on the assumption that the human vision system 
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must attempt to extract the reflection properties of sur-
faces in the world independently of ambient lighting con-
ditions. In other words, it must try to deliver a canonical, 
biological representation of reflectance. 

Physicists achieve this task by defining the notion of 
“reflectance function” linking incident light energy at a 
particular wavelength to reflected light energy at that wa-
velength. Because the majority of surfaces only absorb or 
reflect light energy at a given wavelength, and do not redi-
stribute energy in other wavelengths, physicists can define 
reflectance at a given wavelength λ as a scalar s(λ) attenua-
tion between 0 and 1, and write a simple linear relation 
linking incident light energy e(λ) at wavelength λ to re-
flected light energy p(λ) at that wavelength: 

( ) ( ) ( ),    giving   ( ) ( ) / ( )p s e s p e       (1) 

so that the physical reflectance of a surface is simply the 
ratio of reflected to incident light at each wavelength. 

Unlike physicists, who can measure energy at each 
monochromatic wavelength using a spectroradiometer, 
information accessible to the brain is blurred over the 
breadth of wavelengths that the human L, M, and S cone 
types are sensitive to. It is now no longer true that the 
effect of the surface on incident light can be expressed 
simply as an attenuation of energy within each of these 
broad bands. However, PO show that it is still possible to 
define a “biological” reflectance measure that links the 
information accessible to the brain about the incident 
light, to the information accessible to the brain about the 
reflected light in a way analogous to physicists’ equation 
(1). 

The information accessible to the brain about an il-
luminant e(λ) is the vector corresponding to the responses 
of the three cone types to that illuminant: 

1 2 3( , , )  

where ( ) ( ) ,      1, 2,3

e e e e

e
i i
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w Q e d i  
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

 
  (2) 

here t denotes the transpose of the vector, Qi(λ) for 
i=1,2,3 define the absorption of the three human cone 
types at each wavelength λ, and we integrate over the visi-
ble spectrum ψ. 

The information accessible to the brain about the re-
flected light is the vector corresponding to the responses 
of the three cone types to the reflected light from the sur-
face: 

, , , ,
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Where S(λ) is the physicist's reflectance function for the 
surface s. 

PO now show the at first sight surprising result that 
for any surface s(λ) there exists a 3x3 matrix As which is 
independent of the illuminant e and very accurately de-
scribes the way the surface transforms the accessible in-
formation about any incident light into the accessible in-
formation about reflected light: 

,(  ) ,  s e s ee p A w   (4) 

As is the 3x3 matrix best taking ps,e (for any illumi-
nant e) to we in a least-squares sense. PO studied the va-
lidity of such an equation for a very large number of natu-
ral and artificial illuminants, and for a very large number 
of colored surfaces. In fact, the result is analytically true if 
incoming illumination is of dimensionality 3, that is, if it 
can be described as a weighted sum of three basis func-
tions  (Philipona & O'Regan, 2006). Since this is known 
to be true to a good approximation for Daylights (Judd et 
al., 1964), the equation is very accurate. 

Equation (4) is the biological analogue of the physic-
ists relation (1), but because it is written in terms of vec-
tors and matrices instead of scalars, PO could not imme-
diately invert it by dividing the vector ps,e by the vector we 
to obtain the biological equivalent of the physicist’s reflec-
tance in equation (1). PO were able to do something simi-
lar however by first diagonalizing the matrix As, that is, 
writing it as the product (T s)-1 Ds T s, where Ds is a di-
agonal matrix, and T s is a transformation matrix. In that 
case equation (4) becomes 

 , 1( )  s e s s s ep T D T w  (5) 
so that 

 ,  s s e s s eT p D T w  (6) 
 

Matrix T s operating on ps,e and we maps these vectors 
into a basis where the accessible information matrix is 
diagonal.  Because of the linearity of the integrals the 
same effect can be achieved if instead of using the usual L, 
M, and S cones, we used a set of “virtual” sensors ob-
tained precisely by taking this linear combination T s of 
the cone responses: 

, , ,s e s s e s e s eT p T w    (7) 

Then we can write, in terms of the virtual responses 
ρs,e and ωs,e: 

, ,s e s s eD   (8) 

   
Let us denote the i th component of the diagonal matrix 
Ds as ri

s  
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, ,s e s s e
i i ir   (9) 
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s e
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i s e
i

r



  (10) 

Thus, by considering the virtual, recomposed sensors 
instead of the eye's actual LMS responses,  (10) defines a 
biological reflectance notion analogous to the physicist's 
reflectance defined in (1) for each wavelength. For any 
surface, instead of having a reflectance function defined 
at every wavelength, we have a biological reflectance de-
fined by three reflectance coefficients ri

s, each being the 
ratio of reflected to incident light within one of the three 
virtual wavelength bands defined for i=1,2,3. 

Here we see the link with Retinex theory, where Land 
(Land, 1964) proposed a similar definition of surface col-
or. He called the sensor response triplet for light from a 
given surface divided by the triplet of responses for light 
from a perfect white reflectance (which is equivalent to 
taking the incident light itself) a color designator. The dif-
ference with Land is that Land used LMS responses, hop-
ing that color designators would be approximately inde-
pendent of illumination. PO however used responses of 
the recomposed virtual sensors defined for each surface 
by T s. 

The T s found by PO will typically map the cone sen-
sor functions into virtual sensors which have more con-
centrated support in certain wavelength regions: they are 
LMS type sensors but appear spectrally sharper than the 
cones.  Because of this property they will more nearly 
have the property that the associated color designators are 
independent of illumination. 

And here we see also the link to spectral sharpening. 
In spectral sharpening various algorithms are designed to 
make the reflectance term of (10)  as independent of il-
lumination as possible (Chong, Gortler, & Zickler, 2007; 
Finlayson, Drew, & Funt, 1994b). However, unlike the 
PO work, which returns biological color reflectance terms 
using a different transformation matrix T s for each sur-
face, spectral sharpening seeks a single transformation for 
all surfaces and lights. One of the main contributions of 
this paper is to show that we can use a single, carefully 
chosen, transformation T and predict unique hue and 
color naming data equally well as the PO approach which 
used a per surface transformation T s. Thus, and this is a 
significant improvement over the original work, we need 
not know the surface we are looking at in order to apply 
the theory. 

A second step in the PO formulation concerns their 
singularity index. PO calculated their PO biological reflec-
tance coefficients for the set of Munsell chips used in the 
World Color Survey and noted that in certain cases, one 
or two of the three PO reflectance coefficients were close 
to zero. They called surfaces with this property “singular”, 

because they have the exceptional property of absorbing 
all light in one or two of the three bands defined by the 
virtual sensors. Such chips in some sense behave in a 
“simpler” fashion than other chips, because the variability 
of light reflected off them can be described within one or 
two bands, instead of needing three bands of light to de-
scribe, as is usually the case. An implication of the biolog-
ical reflectance triple having two zeros (or two values close 
to 0) is that under different lights only one of the virtual 
responses changes. For example a red surface with a bio-
logical reflectance triple of (1,0,0) implies a response un-
der different lights of (k,0,0). That is, in the sense that 
variability is restricted to a plane or a line in 3-
dimensional color space, one could say that such chips are 
in some sense more stable under changes of illumination, 
and might be easier to characterise, leading to being more 
frequently designated as focal. 

PO's singularity index took the biological reflectance 
triple rs and sorted its elements in descending order. It 
then calculated the 2-vector βs: 

1

( 1, 2)
s

s i
i s

i

r
i

r




   (11) 

If k1 and k2 are respectively the maximum first and 
second beta components over a set of surfaces, PO's sin-
gularity index for a given surface was defined as: 

1 2

1 2

max ,
s s

POS
k k

  
  

 
 (12) 

SPO is large when one or more of the PO biological 
reflectance components are relatively very small. PO's hy-
pothesis was that large singularity would correspond to 
colors that would be likely to be given a focal name in a 
given culture. Indeed, PO showed that this was the case: a 
strong correlation was found between the SPO of (12) and 
the frequency with which colors in the WCS dataset are 
considered prototypical in different cultures. PO also ex-
tended their analysis to the question of unique hues and 
demonstrated that the singularity index could predict the 
position of the wavelengths for unique hues found classi-
cally in color psychophysics. 

Spectral sharpening to define a 
more plausible biological model 

The notion of spectral sharpening derives its roots 
from Land's retinex theory where there is a notion of color 
designator defined similarly to PO's notion of biological 
reflectance: The LMS triplet for an unknown surface un-
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der unknown light is divided by the response of a white 
surface (under the same light). In so doing the  intent (or 
hope) is that the light should “cancel” and the color des-
ignator should be illuminant independent. However, des-
ignators calculated for the original cone sensors are not 
optimally illuminant independent. Thus the technique of 
Spectral Sharpening is used to find a single transform of 
cone responses with respect to which color designators are 
as independent of the illuminant as possible. Such sen-
sors have sensitivities that are more narrowly concen-
trated and less overlapping in the visible spectrum than 
those of the original cones. Spectrally sharpened color 
designators are similar to PO's notion of biological reflec-
tance, except that a single transformation is used to create 
virtual responses, instead of having a different transform 
for each surface. 

Expressed formally, spectral sharpening (Finlayson, 
Drew, & Funt, 1994a) seeks to find a single surface-
independent sharpening transform T such that over all 
surfaces s: 

, 1( )s e s ep T D T w  (13) 

which implies 

, ,  s e s e s e s eTp D T w D    (14) 

Note that in contradistinction to PO all surfaces share the 
same sharpening transform (no dependency on s).  

There is today a large literature on how to find the best 
transform T. In (Finlayson et al., 1994a) the starting point 
for sharpening was exactly the equation (14). There it was 
shown that if reflectance and illumination are respectively 
modelled by 2- and 3-dimensional linear models (or the 
converse) then (14) holds exactly. This is a remarkable 
result in two respects. First, using the statistical analysis 
provided by Marimont and Wandell (Marimont & Wan-
dell, 1992) (that modelled light and reflectance by how 
they projected to form sensor responses) a 2-dimensional 
model for illumination and a 3-dimensional model for 
surface provides a tolerable model of real response data. 
Second, this result provides a strong theoretical argument 
for believing that a single sharp transform can be used for 
all surfaces. Other optimisation methods exist for deriving 
sharp sensors from Equation (14) including Data-based 
sharpening (Finlayson et al., 1994b), Tensor-based shar-
pening (Chong et al., 2007) and Sensor-based sharpening 
(Finlayson et al., 1994b). Figure 1 gives sharp sensors de-
rived using these last 3 methods together with the Smith-
Pokorny cone fundamentals  (Smith & Pokorny, 1975). 

It is clear from this figure that while the derived sen-
sors are similar there is some variation in the results, rais-
ing the question of which sharp sensor set should be 
used. The question is not immediately easy to answer. 

Indeed, the optimisations underlying the different sharp-
ening techniques developed hitherto were, in part, formu-
lated so that an optimal solution could be easily found. 
None of the existing methods finds the sharp sensors 
which deliver the maximally illuminant-invariant color 
designators. 

Finding the optimal sharpening transform 
Suppose we wish to  compute  the color designators 

(Land, 1964) for n reflectances viewed under a D65 illu-
minant where we map cone responses to sharp counter-
parts using the 3x3 sharpening matrix T. We calculate the 
designator for the sth surface: 

 , 65 , 65  s D s DT p   (15) 

 65 65  D DT w   (16) 

 
Dividing (15) by (16) gives the color designator rs the 
components of which are: 
 

 
, 65

, 65
65

r
s D

s D i
i D

i




  (17) 

In (17) the color designator has D65 in the superscript. 
This is because although we seek color designators which 
are illuminant independent we will not achieve perfect 
invariance. Rather as the illuminant varies so too will the 
computed designators. To select the sensors giving the 
best illuminant independence we will work with each sen-
sor separately, that is, we will minimize each row of the 
matrix T individually (we denote each row as Ti). 

Let us define a vector 1 , 65, 6565 [r , , r ]ns Ds DD
i i

t
iv    

containing the designators defined in equation (17) for 
one of the sensors and a set of surface reflectances under 

the D65 illuminant, and let  1 ,,[r , , r ]ns es ee
i i i

tv    be a 

vector containing the designators for the same surfaces 
and the same sensor under another illuminant e. The 
individual terms for both these vectors are the responses 
of a single sharp sensor divided by the responses of the 
light. As the illuminant changes we expect, for the best 
sharpening transform, that these vectors of designators 
will be similar to one another. Assuming m illuminants 
we seek the transform T which minimizes:  

65

65
1

1
min      i=1, 3

 

 
2,

i

D em
i i

T D
e i

v v

m v




‖ ‖
‖ ‖

 (18) 
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Figure  2: Sensors found using our approach. 
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To find T we shall use the Spherical Sampling tech-
nique proposed by Finlayson and Susstrunk (Finlayson & 
Susstrunk, 2001). This method treats the sharpening 
problem combinatorially defining all possible reasonable 
sharpening transforms. Without recapitulating the detail, 
their key insight was that only if two sensors are sufficient-
ly different (by a criterion amount) will it impact strongly 
on color computations. Indeed they argued that for spec-
tral sharpening it suffices only to consider linear combi-
nations of the cones resulting in sensors that are 1 or 
more  degrees apart. Using this insight there is a discrete 
number of possible sensors and a discrete number of trip-
lets of sensors. We simply take each of a finite set of sharp 
sensors and find the red, green, and blue sharp sensor 
that minimizes (18). The minimization was carried out 
using the WCS reflectances (a subset of 320 Munsell ref-
lectances) and the same set of illuminants as in PO’s pa-
per (Chiao, Cronin, & Osorio, 2000), (Judd et al., 1964), 
(Romero, Garcia-Beltran, & Hernandez-Andres, 1997).  

The optimal T transform we obtain starting with the 
Smith-Pokorny cone fundamentals (Smith & Pokorny, 
1975) is: 

 
In Figure 2 we plot the corresponding sharp sensors 

in solid red, green, and blue.   

 Significantly, we find that PO biological reflectance 
functions (computed using a per surface transformation 
to virtual sensors) and the color designators (computed 
with respect to a single global sharpening transform) are 
strongly correlated (the correlation is 0.9917). Further we 
calculated the singularity index SPO on the PO biological 
reflectances and the sharp color designators. These too 
are correlated (0.9251).  While not identical these high 
correlations provide prima facie evidence that color de-
signators calculated with respect to a single sharpening 
transform can be used instead of the per-surface biological 
reflectance functions proposed by PO (which are based on 
a per surface sharpening transform). 

Compact singularity index  
The idea of PO's singularity index was intuitively 

clear: they wished the index to be high when one or more 
of the color designator (or the PO biological reflectance) 
values is close to zero. However, to translate this idea into 
procedural form required sorting the designator values, 
calculating inter-band ratios, normalizing these ratios and 
taking a maximum. Here we suggest a more elegant, com-
pact singularity measure, which will also turn out to have 
the advantage of being related to chromaticness. 

Let us begin by writing three terms which measure 
the relative magnitude of one sensor response relative to 
the triplet of three responses. Here we use r, g, and b to 
denote the color designators calculated with respect to 
our sharp sensitivities (rather than r1, r2, and r3). Further, 
let us begin by considering singularity in each color chan-
nel separately. 

2.6963 2.3227 0.1559

0.6620 2.0651 0.3052

0.0543 0.0976 1.7924

T

 
    
  

 (19) 

Figure  1: Sharpening sensitivities found by the differ-
ent methods. Data-based sharpening (dashed line), 
Tensor-based sharpening (dotted line), and Sensor-
based sharpening (continuous line). Cone fundamen-
tals are plotted in black. 
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By substituting test values into (20) through (22) we see 
each individual equation implements, correctly, a per 
channel idea of singularity. As an example, we can see 
that when r≈0  and  g and b  are >>0, then, I2 and I3 will 
be very large. We simply add these three terms together to 
define our new Compact Singularity Index: 

 SC computes a single measure which is large when the rgb 
designator has one or two values close to 0. Further, the 
function is symmetric with each of r, g  and b playing the 
same role. That is, unlike the PO definition of singularity 
(see equations (11), (12)) we need not sort our sensor 
response or apply a maximum function. 

Compact singularity and chromaticness 
While (23) is simple (and as we shall see in the next 

section also provides a useful lens through which to view 
WCS color naming detail) it is interesting to examine its 
structure and to relate it to traditional color concepts. Let 
us modify our compact singularity index: 

3 3 3 3 3 3

3C r b g r b g
S

rgb rgb

   
    (24) 

 
Then, we have 

3 3 3 3 3 3 3
3C r b g r b g rgb

S
rgb rgb

    
    (25) 

In this form, the numerator intuitively gives us a 
measure of chromaticness: for achromatic surfaces, where 
r=g=b, the numerator will be 0 (note that, since we are 
dealing with designators, illumination effects have been 
canceled out). In contrast, for any chromatic surface the 
numerator will be positive, becoming bigger as we move 
away from the achromatic axis. Significantly, unlike tradi-

tional measures of saturation our chromaticness measure 
is unbounded: as the rgb becomes more and more satu-
rated and the individual channel values go toward zero so 
our measure becomes unboundedly large. 

Predictions and results 
In one task in the World Color Survey, an average of 

24 native speakers of each of 110 unwritten languages 
were shown a palette of 330 Munsell chips (see Figure 3) 
and asked to pick out the best (or “focal”) example(s) of 
the major color terms  in their language. Figure 4 shows 
the histogram and a contour plot of the number of times 
a given chip was chosen as being such a “focal” color. It is 
seen that there are four peaks, corresponding to certain 
precise hues of “red”, “green”, “blue”, and “yellow”. Thus 
these four hues have a special status across a wide range of 
cultures. 

A key idea in the PO work is that colors that have a 
high singularity index should correlate with colors fre-
quently characterized as focal. The results of PO are 
shown on the left in Figure 5. From left to right the most 
kurtotic peaks correspond to “red”, “yellow”, “green”, and 
“blue” (see Figure 3). At each chip location, the singular-
ity index  for each surface is indicated. Clearly, the gen-
eral trend of the data is quite similar to Figure 4:  the sin-
gularity index increases and decreases in concert with the 
WCS histogram and the peaks are in similar positions. 

In the present paper we have proposed two exten-
sions of the PO work. First, we have calculated color des-
ignators with respect to a single sharpening transform 
(whereas in PO every surface has its own sharpening 
transform); second we have used our simplified Compact 
Singularity Index. The right hand histogram in Figure 5 
plots our Compact Singularity Index with respect to the 
Munsell chips used in the WCS. As in PO, the singularity 
peaks are in close correspondence with the peaks of the 
WCS naming histogram. There is a somewhat better cor-
respondence for “blue” compared to the predictions 
made by PO using their singularity index.  

In their paper PO also compared their results to psy-
chophysical experiments using “aperture colors”. “Aper-
ture colors” are generated by sending lights with con-
trolled spectral composition directly into the eye rather 
than by natural viewing of a colored surface. In order to 
make their approach compatible with the results of such 
experiments, and in particular in order to find a singular-
ity index for lights instead of for surfaces, PO conjectured 
that the nervous system interprets light from aperture 
colors as though it corresponded to light coming from 
colored surfaces illuminated by white light. As referent for 
white light they chose D65. 

Thus, when illuminated with D65 light, the Munsell 
chips used in the WCS can be considered to be aperture 
light sources whose coordinates can be plotted as points 

3

1

r
I

rgb
  (20) 

3

2

g
I

rgb
  (21) 

3

3

b
I

rgb
  (22) 

3 3 3

1 2 3
C r b g

S I I I
rgb

 
     (23) 
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Figure  3: Munsell chips in the WCS data. 

in the usual CIE or LMS spaces. For each such light PO  
plotted the singularity of the corresponding Munsell chip, 
and observed that crests of singularity appeared in the 
CIE or LMS spaces, which, when extended out to the 
monochromatic locus, gave predictions for what should 
be the most singular monochromatic lights. These singu-
lar monochromatic lights corresponded very precisely to 

the so-called “unique hues” observed in psychophysical 
measurements (see Table 1). The range of variation ob-
served in existing experiments measuring unique hues 
could also be explained by the width of the areas of singu-
larity defined by PO's procedure. 

Figure 6 shows the results obtained when applying 
exactly the same method as PO to link aperture colors to 
Munsell chips, with the difference that we use our sharp  
sensors and our compact singularity index. In the left Fig-
ure we have a 3D plot of the singularity corresponding to 
1600 Munsell chips (Joensuu, n.d.), each with the CIE 
value of the light it reflects when illuminated by D65 day-
light. In the right part of the Figure we are looking at the 
x-y projection of the figure, and we have circled the four 
local maxima of the plot. We have connected these 
maxima to the neutral point, and extrapolated out to the 
monochromatic locus where we predict the unique hues 
should be. As seen in Table 1, our predictions are very 
close to PO's, and very close to the empirical data. The 
range of expected variation of the unique hues can be 
estimated in our approach by taking the range over which 
our compact singularity index exceeds some threshold. 
The range shown in the Table is obtained using a thresh-
old of 15% of the maxima of each different mountain. It 
also corresponds accurately to the range of unique hues 
found in the empirical data. However, we should note the 
existence of the Abney effect: there is some curvature in 
the lines of perceived hue in the chromaticity diagram. 
Therefore, our table shows an approximation of the hues. 

It is worth noting that in our approach, in contrast to 
PO's, there is a more direct method of obtaining unique 
hue predictions.  Instead of extrapolating the LMS values 
of singular Munsell chips seen under white light out to 
the monochromatic locus, we can calculate directly the 
singularity of monochromatic lights. To do this, we again 
assume that the color designator associated with a light 
giving a particular sensor response is simply the designa-
tor of a surface illuminated by white light that would give 
that same sensor response. We can now get the designator 
associated with monochromatic lights by calculating the 
sharp sensor response to the monochromatic lights, and 
dividing by the sharp sensor response to white light. For 
this we have used D65 light. From the designator we can 
now calculate the singularity, using our compact singular-
ity index. Figure 7 shows this index  for all monochro-
matic lights. We see that there are extrema corresponding 
closely to the unique hues (see Table 1, last row) and in 
agreement with the more indirect method of calculation. 
It is interesting that the singularity in the green region is 
spread between about 520 and 535 nm.  

PO were also able to explain hue cancellation phe-
nomena in their paper. Hue cancellation quantifies the 
fact that the addition to a light that appears bluish, of a 
certain amount of light that appears yellowish produces a 
light that appears neither bluish nor yellowish, and the 
same for lights that appear reddish or greenish (Jameson 
& Hurvich, 1955). Note that, we are able to explain this Figure  4: Psychophysical results of the WCS data. 
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data in the same manner PO did, by reference to the sin-
gularity of Munsell surfaces, transformed into CIE or 
LMS coordinates by illuminating them with white D65 
light. But more interestingly, we are also able to explain 
the data as an opponent calculation from our spectrally 
sharp sensors. 

First note that the relative peak sensitivity of our sen-
sors is not fixed in all our previous computations (each 
sensor was derived independently). We can therefore ad-
just the peak sensitivities in order to fit the Jameson and 
Hurvich data. To this end, we have run an optimization 
to minimize the root mean square error between the 
Jameson and Hurvich data and our prediction. We do 
this minimization in two steps. First, we deal with the red-
green cancellation by optimizing for αR-βG. The optimal 
values we obtain are α=0.56 and β=0.77. Second, with 
these values of α and β fixed, we move to the blue-yellow 
equilibrium, minimizing δ(αR-βG)-(2δ)γB. The -(2δ)γ 
term is defined in this way to have δ regarding the oppo-
nency and γ regarding the amplitude of the blue sensor. 
In this way, δ allows us to adapt the blue-yellow oppo-
nency away from the more usual δ=1. Following this ap-
proach we obtain γ =0.4860. 

In Figure 8 we can see the new sensor amplitudes and 
the resulting optimal prediction of the Jameson and Hur-
vich data, which has δ=0.6477, that is, the blue-yellow 
opponency is defined as 0.6477(Rc+Gc)-1,2954Bc (al-
ready with the amplitude-corrected sensors Rc, Gc, Bc). 
The two cancellation curves show, on the one hand, the 

intensity of a monochromatic yellow light that must be 
added to a bluish light so that the corresponding stimulus 
is on the locus defining a unique hue different from yel-
low or blue, and on the other hand the same thing for red 
and green lights. 

Our final experiment deals with hue equilibrium. 
Thanks to our account of the loci of unique hues from 
singular surface reflection properties, we (as did PO) 
compare our results to the hue equilibrium experiment of 
Chichilnisky and Wandell (Chichilnisky & Wandell, 
1999). In that experiment, Chichilnisky and Wandell 
looked for the region of the space where a sensation is 
neither bluish nor yellowish, and similarly, the region of 
the space where the sensation is neither reddish nor 
greenish. Figure 9 provides comparison of Chichilnisky 
and Wandell's data with the results using PO's approach 
(left graph), and with the results obtained using the 
Compact Singularity Index following the PO reflectance 
procedure (graph on the center). In these graphs the data 
symbols represent Chichilnisky and Wandell's data for 
subject es while the solid lines represent the predictions 
using estimations of unique hues shown in Table 1. We 
can see that our predictions are about as close to the ex-
perimental data as those obtained from PO's approach.  
Finally, predictions using unique hues found by sharp 
sensors are shown in the right graph. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Unique Yellow Unique green 
Dataset Subjects Mean(nm) Range(nm) Mean(nm) Range(nm) 
Schefrin 50 577 568-589 509 488-536 

Jordan-Mollon 97 - - 512 487-557 
Volbrecht 100 - - 522 498-555 

Webster (a) 51 576 572-580 544 491-565 
Webster (b) 175 580 575-583 540 497-566 
Webster (c) 105 576 571-581 539 493-567 

Po’s SI predic-
tion 

- 575 570-580 540 510-560 

Our-model re-
flectances 

- 580 570-585 555 540-565 

Our model-
sharp sensors 

- 588 585-595 536 515-545 

  Unique Blue Unique Green 
Dataset Subjects Mean(nm) Range(nm) Mean(nm) Range(nm) 
Schefrin 50 480 465-495 - - 

Jordan-Mollon 97 - - - - 
Volbrecht 100 - - - - 

Webster (a) 51 477 467-485 EOS - 
Webster (b) 175 479 474-485 605 596-700 
Webster (c) 105 472 431-486 EOS - 

Po’s SI predic-
tion 

- 465 450-480 625 590-EOS 

Our-model re-
flectances 

- 470 460-480 615 600-EOS 

Our model-
sharp sensors 

- 464 454-470 607 600-640 

Table 1: Unique hues found in the different experiments and the prediction from our model: A new sensor basis along with the 
new CSI index. EOS means End Of Spectrum. 
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Figure  5: Comparison between the results obtained by PO in their paper (left) and our results using a single global 
sharpening transform T and the compact singularity index (right). The solid patches of the bottom-plots represent the 
top 10% of the WCS data. 

 

Figure  6: Left: Plot in ,x y  space for our new compact singularity index for the 1600 Munsell chips. Right: Projection of 
the compact singularity index and the locus of monochromatic lights. 



Journal of Vision (20??) ?, 1-? Vazquez-Corral*, O’Regan, Vanrell & Finlayson* 11 

 

400 450 500 550 600 650 700
−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

5

Wavelength(Nanometers)

S
en

si
tiv

ity

 

Figure  7 : Unique hues plot computed from the sharp sensors. 
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Figure  8: Hue cancellation prediction for our index. Left, the normalized sensors found to predict the data. Right, straight 
lines are our prediction (from an opponent conversion), data symbols represent Jameson and Hurvich data. 
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Figure  9: Hue equilibrium prediction. Left: PO singularity index. Center: Our compact singularity index with the reflectance procedure. 
Right: our compact singularity index with the sharp sensors approach. Crosses and triangles are the Chichilniski and Wandell data for 
their Subject es. Straight lines represent the estimations 

 

Conclusions 
PO suggested an interesting way of understanding psy-

chophysical data on unique hues and anthropological data 
on cross-cultural color naming in terms of the linear map-
ping that describes how reflecting surfaces modify the LMS 
cone catches of the light that falls on them. 

Their approach defined as “singular”, those surfaces 
that have the property that they project incoming LMS val-
ues into a 1- or 2-dimensional subspace of the 3-
dimensional LMS space. They showed that singular surfaces 
accurately correspond to surfaces in anthropological data 
that are most frequently considered prototypical in many 
cultures throughout the world. Singular surfaces are also 
those that, when illuminated with white light, accurately 
correspond to hues that appear to be pure or “unique”. 
Hue cancellation and opponent color matching is also ac-
curately accounted for by PO's approach, without any pa-
rameter adjustments. 

The main novelty of the present paper is to provide a 
way of interpreting PO's approach in terms of spectral 
sharpening theory. We show that by replacing the normal 
LMS sensors by a particular set of sharp sensors, PO's no-
tion of singularity can be interpreted as corresponding to 
lights that activate only one or two, but not three of the 
sharp sensors. We show that a single, unique, set of sharp 
sensors satisfactorily accounts for all the data presented in 
PO's earlier work. In this way, we increase the biological 
plausibility of the model. 

Importantly, in developing our new theory we define a 
new singularity index which is more compact than PO's 
and which establishes a clear link to the idea of chromatic-
ness. Singular colors are colors which have high chromatic-
ness on this measure. Our approach provides estimates of 

color naming, unique hues, hue cancellation and opponent 
color matching which are as accurate if not more accurate 
than PO's. 
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