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this case selection is based on increasing the performance on the subsequent steps of the systems. In this paper we propose 15 
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independent of the visual task. We show the results of a new psychophysical experiment comparing solutions from three 18 
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Abstract 31 

 32 

The estimation of the illuminant of a scene from a digital image has been the goal of a large amount of research in computer 33 

vision. Color constancy algorithms have dealt with this problem by defining different heuristics to select a unique solution from 34 

within the feasible set. The performance of these algorithms has shown that there is still a long way to go to globally solve this 35 

problem as a preliminary step in computer vision. In general, performance evaluation has been done by comparing the angular error 36 

between the estimated chromaticity and the chromaticity of a canonical illuminant, which is highly dependent on the image dataset. 37 

Recently, some workers have used high-level constraints to estimate illuminants; in this case selection is based on increasing the 38 

performance on the subsequent steps of the systems. In this paper we propose a new performance measure, the perceptual angular 39 

error. It evaluates the performance of a color constancy algorithm according to the perceptual preferences of humans, or 40 

naturalness (instead of the actual optimal solution) and is independent of the visual task. We show the results of a new 41 

psychophysical experiment comparing solutions from three different color constancy algorithms. Our results show that in more than 42 

half of the judgments the preferred solution is not the one closest to the optimal solution. Our experiments were performed on a new 43 

dataset of images acquired with a calibrated camera with an attached neutral grey sphere, which better copes with the illuminant 44 

variations of the scene. 45 

 46 

Keywords: Color Constancy evaluation, Psychophysics, Computational Color. 47 

1. Introduction 48 

 49 

Color Constancy is the ability of the human visual system to perceive a stable representation of color despite illumination 50 

changes. Like other perceptual constancy capabilities of the visual system, color constancy is crucial for succeeding in many 51 

ecologically relevant visual tasks such as food collection, detection of predators, etc. The importance of color constancy in biological 52 

vision is mirrored in computer vision applications, where success in a wide range of visual tasks relies on achieving a high degree of 53 
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illuminant invariance. In the last twenty years, research in computational color constancy has tried to recover the illuminant of a 54 

scene from an acquired image  55 

This has been shown to be a mathematically ill-posed problem which therefore does not have a unique solution. A common 56 

computational approach to illuminant recovery (and color constancy in general) is to produce a list of possible illuminants (feasible 57 

solutions) and then use some assumptions, based on the interactions of scene surfaces and illuminants to select the most appropriate 58 

solution among all possible illuminants. A recent extended review of computational color constancy methods was provided by 59 

Hordley1. In this review, computational algorithms were classified in five different groups according to how they approach the 60 

problem. These were (a) simple statistical methods2, (b) neural networks3, (c) gamut mapping4,5, (d) probabilistic methods6 and (e) 61 

physics-based methods7. Comparison studies8,9 have ranked the performance of these algorithms, which usually depend on the 62 

properties of the image dataset and the statistical measures used for the evaluation. It is generally agreed that, although some 63 

algorithms may perform well in average, they may also perform poorly for specific images. This is the reason why some authors10 64 

have proposed a one-to-one evaluation of the algorithms on individual images. In this way, comparisons become more independent 65 

of the chosen image dataset. However, the general conclusion is that more research should be directed towards a combination of 66 

different methods, since the performance of a method usually depends on the type of scene it deals with11. Recently, some interesting 67 

studies have pointed out towards this direction12, i.e. trying to find which statistical properties of the scenes determine the best color 68 

constancy method to use. In all these approaches, the evaluation of the performance of the algorithms has been based on computing 69 

the angular error between the selected solution and the actual solution that is provided by the acquisition method. 70 

Other recent proposals13,14 turn away from the usual approach and deal instead with multiple solutions delegating the selection 71 

of a unique solution to a subsequent step that depends on high-level, task-related interpretations, such as the ability to annotate the 72 

image content. In this example, the best solution would be the one giving the best semantic annotation of the image content. It is in 73 

this kind of approach where the need for a different evaluation emerges, since the performance depends on the visual task and this 74 

can lead to an inability to compare different methods. Hence, to be able to evaluate this performance and to compare it with other 75 

high-level methods, we propose to explore a new evaluation procedure. 76 

In summary, the goal of this paper is to show the results of a new psychophysical experiment following the lines of that 77 

presented in15. The previous results were confirmed, that is, humans do not chose the minimum angular error solution as the more 78 

natural. Furthermore, in this paper we propose a new measure to reduce the gap between the error measure and the Humans 79 

preference. Our new experiment represents an improvement over the old one in that it considers the uncertainty level of the observer 80 

responses and it uses a new, improved image dataset. This new dataset has been built by using a neutral gray sphere attached to the 81 

calibrated camera to better estimate the illuminant of the scene. We have worked with the shades-of-grey16 algorithm instead of 82 

CRule17. This decision has been taken on the basis of CRule is calibrated whereas the other algorithms are not. This paper is divided 83 

as follows. In section 2 we present how the experiment has been driven. Afterwards, in section 3 we show the results. Later on, in 84 

section 4 a new perceptual measure to deal with the evaluation of color constancy algorithms is presented. Finally, in section 5, we 85 

sum up the conclusions. 86 

 87 
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2. Experimental Setup 88 

Subjects were presented with a pair of images (each one a different color constancy solution) on a CRT monitor and asked to 89 

select the image that seems "most natural". The term "natural" was chosen not because it refers to natural objects but because it refers 90 

to natural viewing conditions, implying the least amount of digital manipulation or global perception of an illuminant. Figure 1 91 

shows some exemplary pictures from the database. The pictures on the left are examples of images selected as natural most of the 92 

time, while those on the right are examples of images hardly ever selected as natural.  93 

 94 

 95 

Figure 1: Images regularly selected in the experiment as natural (left) versus images hardly ever selected (right). 96 

The global schematics of the experiment are shown in Figure 2. We used a set of 83 images from a new image dataset that was 97 

built for this experiment (the image gathering details are explained in section 2.2). The camera calibration allows us to obtain the 98 

CIE1931 XYZ values for each pixel and consequently, we converted 83 images from CIE XYZ space to CIE sRGB. Following this, 99 

we replaced the original illuminant by D65 using the chromaticity values of the grey sphere that was present in all image scenes.  100 

 101 

From the original images, 5 new pictures were created by re-illuminating the scene with 5 different illuminants. To this end we 102 

have used the chromatic values of each illuminant (3 Plankians: 4000K, 7000K, 10000K, and two arbitrary illuminants: Greenish (x 103 

= 0.3026, y = 0.3547) and Purplish (x = 0.2724, y = 0.2458), totaling 415 images. Afterwards, the three color constancy algorithms 104 

(Grey-World2, Shades-of-Grey16 and MaxName15) explained in section 2.2 were applied to the newly created images. Consequently, 105 

we obtain one solution per test image per algorithm, totaling 1245 different solutions. These solutions were converted back to CIE 106 

XYZ to be displayed on a calibrated CRT monitor (Viewsonic P227f, which was tested to confirm its uniformity across the screen 107 

surface) using a visual stimulus generator (Cambridge Research Systems ViSaGe). The monitor’s white point chromaticity was 108 

(x=0.315, y= 0.341) and its maximum luminance was 123.78 Cd/m2. The experiment was conducted in a dark room (i.e. the only 109 

light present in the room came from the monitor itself). 110 
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 111 

Figure 2: Experiment Schedule. 112 

The experiment was conducted on 10 naïve observers recruited among university students and staff (none of the observers had 113 

previously seen the picture database). All observers were tested for normal color vision using the Ishihara and the Farnsworth 114 

Dichotomous Test (D-15). Pairs of pictures (each obtained using one of two different color constancy algorithms) were presented one 115 

on top of the other on a grey background (31 Cd/m2). The order and position of the picture pairs was random. Each picture subtended 116 

10.5 x 5.5 degrees to the observer and was viewed from 146 cm. This brings us to 1245 pairs of observations per observer. No 117 

influence on picture (top or bottom) position in the observers’ decision was found. 118 

 119 

For each presentation, observers were asked to select the picture that seemed most natural, and to rate their selection by pressing 120 

a button on an IR button box. The set up (six buttons) allowed observers to register how convinced they were of their choice (e.g. 121 

strongly convinced, convinced, and marginally convinced). For example if an observer was strongly convinced that the top image 122 

was more natural that the bottom one, it would press button 3 (see Figure 2), if it was marginally convinced that the bottom picture 123 

was the most natural it would press button 4 and so on. There was no time limit but observers took an average of 2.5 seconds to 124 

respond to each choice. The total experiment lasted 90 minutes approximately (divided in three sessions of 30 minutes each) 125 

2.1. A new image dataset 126 

To test the models we need a large image dataset of good quality natural scenes. From a colorimetric point of view, the obvious 127 

choice is to produce hyperspectral imagery, to reduce metameric effects. However, hyperspectral outdoor natural scenes are difficult 128 

to acquire since the exposure times needed are long and its capture implies control over small movements or changes in the scene, 129 

(not to talk of the financial cost of the equipment). There are currently good quality images databases available (such as the 130 

hyperspectral dataset built by Foster et al 18 and Brelstaff et al19), but they either contain specialised (i.e. non-general) imagery or the 131 

number of scenes is not large enough for our purposes. For this reason, and because metamerism is relatively rare in natural 132 
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scenes20,21, we decided to acquire our own dataset of 83 images (see Figure 3) using a trichromatic digital colour camera (Sigma 133 

Foveon D10) calibrated to produce CIEXYZ pixel representations. 134 

The camera was calibrated at Bristol University (UK) Experimental Psychology lab by measuring its color sensors’ spectral 135 

sensitivities using a set of 31 spectrally narrowband interference filters, a constant-current incandescent light source and a TopCon 136 

SR1 telespectroradiometer (a process similar to that by others22,23). The calibrated camera allows us to obtain a measure of the CIE 137 

XYZ values for every pixel in the image. Images were acquired around Barcelona city at different times of the day and in three 138 

different days in July 2008. The weather was mostly sunny with a few clouds. We mounted a grey ball in front of the camera (see 139 

Figure 4), following the ideas of Ciurea et al24. The ball was uniformly painted using several thin layers of spray paint (Revell 140 

RAL7012-Matt, whose reflectance was approximately constant across the camera’s response spectrum and its reflective properties 141 

were nearly Lambertian –see Figure 5). The presence of the grey ball (originally located at the bottom-left corner of every picture and 142 

subsequently cropped out) allows us to measure and manipulate the color of the illuminant. Images whose chromaticity distribution 143 

was not spatially uniform (as measured on the grey ball) were discarded.  144 

 145 

 146 

 147 

Figure 3: Image dataset under D65 illuminant. 148 

 149 

Figure 4: Camera and grey sphere setup. 150 
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 151 

Figure 5: Reflectance of the paint used on the ball. 152 

2.2. Selected color constancy algorithms 153 

 154 

In this section we briefly summarize the three methods we have selected for our analysis. We have chosen two well-known 155 

methods, Grey-World2 and Shades-of-Grey16, and a more recent method, the MaxName algorithm15. The Grey-World algorithm (an 156 

uncalibrated method based on a strong assumption about the scene) was selected because of its popularity in the literature. The 157 

Shades-of-Grey algorithm (another uncalibrated algorithm) was selected because it considerably improves performance with respect 158 

to Grey-World (another uncalibrated algorithm such as Grey-edge25 could also have been used). Finally, MaxName15 was selected 159 

because it uses high-level knowledge to correct the illuminant. We give a brief outline of these methods below. 160 

1. Grey-World. It was proposed by Bunschbaum2 and it is based on the hypothesis that mean chromaticity of the scene 161 

corresponds to grey. Given an image f = (R,G,B)T as a function of RGB values, and adopting the diagonal model of illuminant 162 

change26, then an illuminant (α,β,γ) accomplishes the Grey-World hypothesis if 163 

 164 

·( , , )
f x

k
x

α β γ
∂

=
∂

∫
∫

 (1) 165 

 166 

where k is a constant.  167 

 168 

2. Shades-of-grey. It was proposed by Finlayson16. This algorithm is a statistical extension of Grey-World and MaxRGB27 169 

algorithms. It is based on Minkowski norm of images. An illuminant (α,β,γ) is considered as the scene illuminant if it accomplishes 170 

1

·( , , )
p pf x

k
x

α β γ
⎛ ⎞∂
⎜ ⎟ =
⎜ ⎟∂⎝ ⎠

∫
∫

 (2) 171 

where k is a constant. Actually, this is a family of methods where p=1 is Grey-World method, and p= ∞ is Max-RGB algorithm. 172 

In this case we have used p= 12, since it is the best solution for our dataset. 173 

 174 
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3. MaxName.  This algorithm is a particular case of the one presented by Vazquez et al15. It is based on giving more weight to 175 

those illuminants that maximize the number of color names in the scene. That is, MaxName builds a weighted feasible set by 176 

considering nameable colors, this is prior knowledge given by  177 

 178 

∫ ∂=
ω

λλλλμ )()()( kk RES , k=R, G, B (3) 179 

 180 

where, S(λ) are the surface reflectances having maximum probability of being labeled with a basic color term, also called focal 181 

reflectances (from the work of Benavente28). In addition to the basic color terms, we added a set of skin colored reflectances. In 182 

Equation 3, E(λ) is the power distribution of a D65 illuminant and Rk(λ) are the CIE RGB  1955 Color Matching Functions. 183 

We define μ as the set of all k-dimensional nameable colors obtained from Equation 3. The number of elements of μ depends on 184 

the number of reflectances used. Following this, we compute the Semantic Matrix, denoted as SM, which is a binary representation of 185 

the color space as a matrix, where a point is set to 1 if it represents a nameable color, that is, it belongs to μ, and 0 otherwise. Then, 186 

for a given input image, I, we compute all possible illuminant changes Iα,β,γ. For each one, we calculate its nameability value. This is 187 

done by counting how many points of the mapped image are nameable colors in SM and can be computed by a correlation in log 188 

space:  189 

)log(*))(log(,, SMIHNval bin=γβα
 (4) 190 

 191 

In the previous equation, binH  is the binarized histogram of the image, Nval at the position (α,β,γ) is the number of 192 

coincidences between the SM and  
γβα ,,I . Nval is a 3-dimensional matrix, depending on all the feasible maps, (α,β,γ). From this 193 

matrix, we select the most feasible illuminant as the one that accomplishes: 194 

 195 

Nval
),,(

maxarg),,(
γβα

γβα =  (5) 196 

that is, the one giving the maximum number of nameable colors. 197 

3. Results 198 

 199 

The results of the experiment validate those presented by Vazquez et al15, with a different image dataset and a different set of 200 

algorithms. The main finding is that preferred solutions, namely the more natural in the psychophysical experiment, do not always 201 

coincide with solutions of minimum angular error. In fact, this agreement only happened in 43% of the observations, independently 202 

of the degree of certainty of the observers when making the decision. 203 

Since the experimental procedure allows us to define a partition in the interval [0,1] to encode the subject selection and each 204 

observation represents a decision between two images, then for each observation we label one image as the result from Method A, 205 



 8

and the other as the result from Method B (Method A and B are labeled as 1 and 0, respectively). The confidence of the decision is 206 

considered at three different levels (the three buttons that the subject was allowed to press –ordinal paired comparison29). For 207 

example, suppose that a scene processed by Method A is presented on top of the screen and a second scene processed by Method B is 208 

presented at the bottom (the physical position of the scenes was randomized in each trial, but let’s consider an exemplary layout). If 209 

the subject thinks that the top picture is more natural it will press one of the top buttons in Figure 2 according to how much he/she is 210 

convinced. Suppose the subject presses button 3 (top-right: definitely more natural), then the response is coded as 1. If the choice is 211 

button 2 (top-center: sufficiently more natural) the response is coded as 0.8, etc. (see Table 1). If, on the contrary the subject thinks 212 

the bottom picture (Method B) is more natural, then he/she will press a button from the lower row (Figure 2). If he/she is marginally 213 

convinced, will pick button 4 (bottom-left) and the response will be coded as 0.4 according to Table 1. Similarly if he/she is strongly 214 

convinced, will press button 6 (bottom-right) and the response will be coded as 0. In this way we collect not only the direction of the 215 

response but its certainty. Observer’s certainty was found to be correlated (corr. coef. 0.726) to a simple measure of image difference 216 

(the angular error between each image pair). This technique is similar to that used by other researchers30-33. 217 

Image at the bottom is more “natural” than Image 

at the top 

Image at the top is more “natural” than Image at 

the bottom 

Button 6 Button 5 Button 4 Button 1 Button 2 Button 3 

Definitely more 

natural 

Sufficiently 

more natural 

Marginally 

more natural 

Marginally 

more natural 

Sufficiently 

more natural 

Definitely more 

natural 

0 0.2 0.4 0.6 0.8 1 

Table 1: Buttons codification. 218 

 219 

We have computed two different measures of observer variability. The first measure is the correlation coefficient between 220 

individual subjects and the average (in black in Figure 6). Table 2 shows this measure. The idea behind this analysis is to detect 221 

outliers (subjects with a distribution of results significantly different to the rest of the observers, i.e. low correlation). Our second 222 

measure is the coefficient of variation (CV)34,35, which computes the difference between two statistical samples (see Table 2). Both 223 

measures were calculated for the whole 1245 observations (3 combinations of color constancy solutions x 415 observations per 224 

combination). 225 

 226 
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 227 

Figure 6: Comparison to the mean observer (black line). 228 

 229 

Observer 1 2 3 4 5 6 7 8 9 10 

Correlation 0.54 0.57 0.59 0.55 0.52 0.23 0.48 0.63 0.61 0.55 

CV 52,49% 57,96% 37,65% 52,28% 52,69% 59,85% 47,12% 51,13% 25,36% 42,81% 

Table 2: Correlation between each observer and  mean observer. 230 

From this table, and from the distribution of the plots in Figure 6, we decided to omit data from observer 6 (very low correlation 231 

coefficient and highest coefficient of variation) in all subsequent analysis. 232 

 233 

As a first approach to analyze our results we computed the mean of the observers’ responses for each pairwise comparison. We 234 

considered that a method was selected if the mean of the encoded decisions, computed for all 9 observers, is greater than 0.5 (when 235 

the method was encoded as 1) or lower than 0.5 (when the method was encoded as 0). The performance does not vary significantly if 236 

we do not consider the cases where the average value is too close to the chance rate (e.g. averages between 0.45 and 0.55). The 237 

results of these pairwise comparisons are given in Table 3. For each pair of methods, we show the percentage of cases where it has 238 

been selected against the others. Thus, results in Table 3 can be interpreted as follows: each method (in rows) is preferred a certain 239 

percentage of trials over the method in the columns. For example, Shades-of-Grey is preferred in 68.1% of the trials against Grey-240 

world. 241 

 242 

 243 
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 244 

 245 

               vs.      Method 

Selected  method  

 

Shades-of-Grey 

 

Grey-World 

 

MaxName 

Shades-of-Grey - 68.1% 50.6% 

Grey-World 31.9% - 37.6% 

MaxName 49.4% 62.4% - 

Table 3: Results of the experiment in the 1-to-1 comparison.  246 

The percentages in Table 3 show that the images produced by Shades-of-Grey and MaxName are preferred to those produced by 247 

Grey-World (68,1% and 62,4%). However, there is no clear preference when compared against each other (50.6% Shades-of-Grey 248 

preference vs. MaxName). 249 

 250 

In Table 4 we show a global comparison of all algorithms (the percentages are computed for all 415 images). A method was 251 

considered a “winner” for a given image if it was selected in two of the three comparisons. Methods were evaluated in the same way 252 

as we did for results in Table 3 (that is, a greater than a 0.5 mean value from all observers is encoded as 1). Evaluating this way, there 253 

are some cases where the three methods are equally selected (this happens in 8.92% of the images). This analysis was formulated in 254 

order to remove non-transitive comparisons (e.g. method A beats method B, method B beats method C and method C beats method 255 

A). Hence, we can conclude from these straightforward analyses that solutions from MaxName are preferred in general, but closely 256 

followed by Shades-of-Grey (39.28% and 35.18% respectively). We can also state that Grey-World solutions are the least preferred 257 

in general (with a low percentage of 16.63%). Moreover, the best angular error solution is selected in 42.96% of the cases. 258 

 259 

Method Wins 

Shades-of-Grey 35.18% 

Grey-World 16.63% 

MaxName 39.28% 

3-equally selected 8,92% 

Table 4: Experiment results in a general comparison. 260 

We have also calculated the Thurstone’s Law of Comparative Judgement36 coefficients from our data (Table 5), obtained from 261 

the ordinal pairwise comparisons. Using this measure, results are not very different (Shades-of-Grey and Maxname are clearly better 262 

than Grey-World although the ranking changes) and images with minimal angular error are only selected in 45% of the cases. 263 

 264 
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Method Wins 

Shades-of-grey 42.65 % 

MaxName 36.39 % 

Grey-World 20.96 % 

Table 5: Results using Thurstone’s Law of Comparative Judgement 265 

Finally, we have computed two overall analyses (considering all scenes as one) in order to extract a global ranking for our color 266 

constancy methods: the Thurstone’s Law of Comparative Judgement36 and the Bradley-Terry37 analysis. Table 6 shows the results of 267 

the Bradley and Terry’s cumulative logit model for pairwise evaluations extended to ordinal comparisons29. These results are shown 268 

on the “estimate” column where the estimate reference has been set to 0 for the smallest value (Grey-World model). The standard 269 

error of this ranking measure shows that the two best models (Shades-of-Grey and MaxName) are better than Grey-World and 270 

arguably close to each other. Table 7 shows a similar analysis using Thurstone’s Law of Comparative Judgement36  and considering 271 

all scenes as one. 272 

 273 

Parameter 
  DF Estimate 

Standard 
Error 

Wald 95% 
Confidence Limits 

Chi-
Square Pr>ChiSq 

        
Shades-of-grey 1 1.609 1.2231 -0.7882 4.0063 1.73 0.1883 
MaxName 1 1.0256 0.8435 -0.6278 2.6789 1.48 0.2241 
Grey-World 0 0 0 0 0 . . 

Table 6: Results using Bradley-Terry ordinal pairwise comparison analysis 274 

 275 

Parameter DF Estimate 
Standard 
Error 

Wald 95% 
Confidence Limits 

Chi-
Square Pr>ChiSq 

        
Shades-of-grey 1 0.196 0.0031 0.19 0.2021 4040.2 <.0001 
MaxName 1 0.1283 0.0031 0.1223 0.1343 1743.22 <.0001 
Grey-World 0 0 0 0 0 . . 

Table 7: Results using Thurston law of comparative judgment binary pairwise comparison analysis 276 

 277 

As we mentioned above, our experiment shows that images having minimum angular error with respect to the canonical solution 278 

are selected in less than half of the observations (when we ask people for the most natural image, the response, does not always 279 

correspond to the optimal physical solution). Moreover, this result is maintained even if we discard responses with low levels of 280 

certainty. In order to quantify this fact, in the next section we will introduce a new measure to complement the current performance 281 

evaluation of color constancy algorithms. 282 

4. Perceptual performance evaluation 283 
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 284 

Assuming the ill-posed nature of the problem, the difficulty of finding an optimal solution and the results of the present 285 

experiment, we propose an approach to color constancy algorithms that involves human color constancy by trying to match 286 

computational solutions to perceived solutions. Hence, we propose a new evaluation measurement, the Perceptual Angular Error, 287 

which is based on perceptual judgments of adequacy of a solution instead of the physical solution. The approach that we propose in 288 

this work does not try to give an alternative line research to the current trends which focus on classifying scene contents to efficiently 289 

combine different methods: here we try to complement these efforts from a different point of view that we could consider as more 290 

“top-down”, instead of the "bottom-up” nature of the usual research. 291 

As mentioned before, the most common performance evaluation for color constancy algorithms consists in measuring how close 292 

their proposed solution is to the physical solution, independently of the other concerns. This has been computed as 293 

 294 
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 296 

which represents the angle between the actual white point of the scene illuminant, wρ , and the estimation of this point given by the 297 

color constancy method, wρ̂ , which can be understood as a chromaticity distance between the physical solution and the estimate. 298 

The current consensus is that none of the current algorithms present a good performance on all the images38, and a combination of 299 

different algorithms offers a promising option for further research. Our proposal here is to introduce a new measure, the perceptual 300 

angular error, ang
pe , that would be computed in a similar way: 301 
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 304 

where p
wρ  is the perceived white point of the scene (which should be measured psychophysically) and wρ̂  is an estimation of this 305 

point, that is the result of  any color constancy method, as in Equation 6. The difficulty of this new measurement arises from the 306 

complexity of building a large image dataset, where p
wρ , the perceived white point of the images has been measured.  307 

In this work we propose a simple estimation of this perceived white point by considering the images preferred in the previous 308 

experiment. Hence, the perceived white point is given by the images coming from the color constancy solutions that have been 309 

preferred by the observers.  The preferred solutions, that is, the most natural solutions, can give us an approximation to the perceived 310 

image white point. 311 
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Making the above consideration, in Figure 7 we can see how the estimation of the perceptual angular error works for the three 312 

tested algorithms. In the abscissa we plot a ranking of the observations in order to get the perceptual errors in descending order. In 313 

the ordinate we show the estimated perceptual angular error for each created image (that is, 415 different inputs to the algorithms). A 314 

numerical estimation of the perceptual angular error could be the area under the curves plotted in Figure 7. In the figure we can see 315 

that both Shades-of-Grey and MaxName work quite similarly, while Grey-World presents the highest perceptual error. This new 316 

measurement agrees with the conclusion we summarized in the previous section and provides a complementary measure to evaluate 317 

color constancy algorithms. In Figure 8 we show a similar plot for the usual angular error. 318 

 319 

 320 

Figure 7: Estimated Perceptual Angular error (between method estimations and preferred illuminants). 321 

 322 

Figure 8: Angular error between methods estimations and canonical illuminant. 323 

In Tables 8 and 9 we show the different statistics on the computed angular errors. In Table 8, the angular error between the 324 

estimated illuminant and the canonical illuminant are shown.  In this case, MaxName and Shades-of-Grey present better results than 325 
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Grey-World. In Table 9 equal statistics are computed for the estimated perceptual angular error. The results on this table confirm the 326 

conclusions we obtained from Figure 7. 327 

 328 

 Mean RMS Median 

MaxName 7.64º 8.84º 6.78º 

Shades-of-Grey 7.84º 9.70º 5.95º 

Grey-World   10.05º 12.70º 7.75º 

Table 8: Angular error for the different methods on 415 images of the dataset.  329 

 330 

 Mean RMS Median 

MaxName 3.86º 6.02º 2.61º 

Shades-of-Grey 3.79º 5.66º 2.86º 

Grey-World   6.70º 9.01º 5.85º 

Table 9: Estimated perceptual angular error for the different methods on 415 images of the dataset. 331 

5. Conclusion 332 

 333 

This paper explores a new research line, the psychophysical evaluation of color constancy algorithms. Previous research point 334 

out to the need to further explore the behavior of high-level constraints needed for the selection of a feasible solution (to avoid the 335 

dependency of current evaluations on the statistics of the image dataset). With this aim in mind, we have performed a psychophysical 336 

experiment in order to compare three computational color constancy algorithms: Shades-of-Grey, Grey-World and MaxName. The 337 

results of the experiment show Shades-of-grey and MaxName methods have quite similar results which are better than those obtained 338 

by the Grey-World method and that in almost half of the judgments; subjects have preferred solutions that are not the closest ones to 339 

the optimal solutions. 340 

Considering that subjects do not prefer the optimal solutions in a large percentage of judgments; we have introduced a new 341 

measure, based on the perceptual solutions to complement current evaluations: the Perceptual Angular Error. It tries to measure the 342 

proximity of the computational solutions versus the human color constancy solutions. The current experiment allows computing an 343 

estimation of the perceptual angular error for the three explored algorithms. However, our main conclusion is that further work 344 

should be done in the line of building a large dataset of images linked to the perceptually preferred judgments.  345 

To this end a new, more complex experiment, perhaps related to the one proposed in39, must be done in order to obtain the 346 

perceptual solution of the images, independently of the algorithms being judged. 347 

 348 
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