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content
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Abstract. The main goal of this paper is to define a new colour space that represents
the colour information of the image in such a way to give a more coherent spatio-
chromatic representation. This space can allow to improve the performance of the
algorithms of blob detection. To build the space we base colour representation on
the ridges of the colour image distribution since it has been proved that they capture
the essential colours of the image. Then we will define a colour space where each
channel depends on one of the ridges. Finally, to select the essential channels we
apply a Constraint Satisfaction algorithm that allows to get a reduced number of
channels minimizing the correlation between them.
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1. Introduction

In this work we propose a new colour space that adapts to the image content. The final
goal for this new space is to achieve the best representation of colour information for a
specific visual task. In particular, we focus on optimal representations for computational
detection of colour blobs. Our proposal is a colour space that pursue the criterion of
mimimum inter-channel correlation. As a consequence of the procedure defined to build
the space it also presents the property of similar entropy in all the channels.

In colour science a lot of different colour spaces have been defined [10]. Each one
presenting different properties for different purposes. For instance, uniform spaces , such
as, CIELAB or CIELUV, allow an Euclidean metric to represent perceptual similarity.
Other spaces as RGB or CMY have been the basis for building acquisition, visualization
or printing devices. In this paper we propose to define a new colour space that pursue a
good representation to better extract the image content. As we already mentioned above,
we will adapt the colour information to improve the detection of coloured image blobs.

Detection of coloured image blobs is a low-level visual task of a great importance
in computer vision. In computer vision an image blob is a connected image region that
presents an homogeneous colour. A successful extraction of image blobs can be the basis
to overcome the subsequent steps in the image understanding process. Blob extraction
is essential in the first steps of texture description [4], background substraction [2],[3],
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(a) (b) (c) (d)

Figure 1. RGB channels of image (a), where (b) in the red channel, (c) the green channel, and (d) the blue
channel

or motion analysis [5]. The computational approaches to deal with blob extraction have
been essentially developed for gray-level images [6], where the laplacian filtering is the
basis to extract image blobs. However, not such an effort has been done to extend this
theory to colour images, and usually, the extension is done by just applying the gray-
level algorithms on each colour channel separately. Hence the final detection of blobs
is the combination of the blobs detected separately on each colour channel, usually red,
green and blue. However, in figure 1 we can see that detecting blobs in RGB channels
separately, does not assure to get the blobs we perceive in the colour image, in this case
we can see small non-elongated blobs in red, yellow, light blue and dark blue, whereas
in the RGB channels we have long elongated blobs in different orientations.

The results of this work are framed in the context of a project on automatic image
anotation, where one of the goals is the description of textures. There are different ap-
proaches to extract and describe texture information and several works discuss how to
deal with coloured texture [8]. A type of approaches are those that build the texture de-
scription based on the attribute of its blobs, following psychophysical theories [4]. These
are the ones that motivates the goal of this paper, that is, to build a colour space that
provide an adequate representation to detect colour image blobs as the basis for colour-
texture description.

To this end, this paper has been organized as follows. In section 2 we introduce an
algorithm to extract the essential colour information of an image, that is, the ridges of
the colour distribution. Afterwards, in section 3 we propose a procedure to build a new
colour representation based on this essential ridges. In section 4 we propose a method
to reduce the number of dimensions of this new space, using a constraint satisfaction
algorithm that allow to evaluate the feasibility of our proposal. Finally, we sum up the
conclusions and explain different lines of research, since this is just a new research line
we are just beginning to explore in this work.

2. Colour-Content Structure

In order to be able to define a colour space with the properties we have expressed above,
we will need to extract the essential information of the image content. To this end we will
extract this information dealing with the results of a recent work from Vazquez -et al [9]
where they propose to cope the essential colour structure of an image by extracting the
ridges [7] of the 3D colour distribution. In figure 2 we can see an example of the ridges
of the image given in figure 1.(a). In figure 2.(a) we show a 3D coloured representation



3

(a) (b) (c)

Figure 2. Explanation of the ridges of the image 1.(a). In (a) we could see a 3D coloured representation of the
image, (b) are the detected ridges and (c) are the important ones

that gives an idea of its colour distribution. Figure 2.(b) gives the ridges detected by the
method and in figure 2.(c) we show a simplification after removing the noisy ridges as we
will explain in next section. This reduction let us to represent the four principal colours
we perceive in the original image, these are red, yellow, dark blue and light blue.

It has been proved in [9] that ridges fulfill two essential properties which are those
that allow them to cope the colour structure, these are:

• Connectivity of all the points in a ridge, that assure the connectivity of the influ-
ence zone.

• Peek and valley substraction, since the ridges extract all the distribution maxima
plus all their nearby important colours.

Therefore, we will use this reduced representation of the essential image colour as
the basis, in some sense, of our proposal for a new space. We can do it, by considering
that any image point will belong to an influent zone of a ridge, that is to an essential
colour. Influent zones are computed from the Voronoi diagram of the ridges on the colour
distribution. The RGB values of an image point will determine to which influence zone
it belongs.

3. Content-Based Colour Space

Before to define how to compute our proposal for a content-based colour space (CBCS),
we will specify which are the main requirements we pursuit with it:

1. Distances in this space should correlate with perceived colour differences
2. Important blobs must maintain its perceived geometric structure
3. Each space dimension should represent a different colour property in order to

cope with most of the color information.
4. All important blobs should appear at least in one of the space dimensions.

To fulfill these requirements we propose a colour space whose dimension will coin-
cide with the number of important ridges we extract. We decide this number applying a
preprocessing step on the ridges obtained with the algorithm of section 2. It is based on
an iterative process that reduces those ridges containing a minimum number of pixels in
its influence zone, afterwards all these points are redistributed to the remaining ridges.
This is repeated iteratively until we achieve a prefixed number of ridges that will be the
number of channels of our proposed colour space. The number of ridges we select will
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Figure 3. Scheme of ridge distances used to build the space.

determine the amount of information we are able to represent and this number will allow
to fulfill the requirement 4 we have established before.

Therefore, each image channel will be related to a specific ridge. Considering that
each image pixel belong to the influence zone of one specific ridge, we propose to build
the components of pixel in the new space by using two distances, these are:

• The distance between the ridge of the pixel and the ridge of the channel
• The distance between the pixel and the ridge it belongs to.

This proposed distances, as it can be seen in figure 3 are representing two different
dependencies, an internal dependency only depending on the pixel and its own ridge, and
another external depending on the ridge of the channel. These two dependencies let the
method to accomplish requirements 1 and 2.

Hence, we propose to build the i-component of a pixel p, we denote as Chi(p) as

Chi(p) =
Ym

maxq∈I h(q)
h(p) (1)

where p, q are pixels of the image I : <2 → <3, Ym is the maximum intensity of the
channel and

h(p) = max
q∈I

(f(q))− f(p), (2)

where h(p) takes the 0 when p is the farthest pixel to ridge i, and h(p) takes its
maximum when p is the nearest, where f(p) is representing the distance of p to the ridge
i and its defined as:

f(p) = k1d1(I(p), Rj) + k2d2(Ri, Rj) (3)

that weights the pixels of the new channel according to the distance to the image
ridges, which are denoted as Rk, and depends on the image content. In this case, Ri is
the ridge related to the i channel, and Rj is the ridge whom pixel p belongs to. Distances
d1 and d2 are defined as

d1(~x,Rj) = inf
~y∈Rj

d(~x, ~y) (4)
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Figure 4. CBCS channels (b),(c),(d),(e) of an original image (a), and results of a blob detection (f),(g),(h),(i)
in these channels where red, dark blue, yellow and light blue blobs are detected in this order

that is the infim distance between a point of the RGB space and its own ridge, and

d2(Ri, Rj) = inf
~x∈Ri,~y∈Rj

d(~x, ~y) (5)

is the distance between two ridges, that is also computed by the infim distance be-
tween their points; d(~x, ~y) is the euclidean distance between any two points, ~x, ~y of the
space.

Finally, k1 and k2 are scalar factors that can be used to establish the entropy of the
channels we have built. Depending on the distance between ridges we could serve these
factors to order the ridges an increase or decrease the entropy, this would require to define
k2 as a vector of scalar factors, one for each d2(Ri, Rj).

In figure 4 we can see the results of the original image in figure 1 in our colour space
at this level and the capability of our space to detect the four different types of blobs: red,
yellow, light blue and dark blue.

4. Dimension reduction and evaluation

Once we have built a proposal for a content-based colour space, now we will try to see
how the requirement 3 is fulfilled. That is, we propose to analyze what is the information
included in each channel by the proposed space. We have proposed an algorithm based on
a fixed number of channels, let say n. In this section we propose a constraint satisfaction
algorithm that will allow to select a reduced version of the CBCS space based on the
selection of channels that best represent all the image blobs.

The Constraint Satisfaction algorithm will allow to select a smaller number, m
(where m < n), of channels selecting those ones that maximize the premise of better
blob representation. We can see this process as searching the best m channels of the
n dimensional CBCS representation fulfilling the constraint of minimum inter-channel
correlation, that is to minimize:

F (a1, ..., am) =
∑

i=1:m,j=1:m,i>j

|r(ai, aj)| (6)
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Figure 5. RGB channels and CBCS channels from an image. (b),(c),(d) are the RGB channels from image (a),
and (e),(f),(g),(h),(i) are the CBCS channels where (h),(i) are the rejected ones

where (a1, · · · , am) ∈ A, A = (a1, · · · , an) is the set of channels and r is the
correlation coefficient computed as:

r(ai, aj) =
∑

k=1:n(xk − x̄)(yk − ȳ)
(n− 1)sxsy

(7)

where xk, yk are the values of the pixels in each channel, x̄, ȳ are the mean of these
values and sx, sy are the standard deviation of these values.

The m-dimensional representation we can derive as a solution of this constraint sat-
isfaction problem allow to achieve requirement 3.

To evaluate the performance of this new colour space we have posed an experiment
over a set of 200 images, built from the Mayang image dataset and from the Vistex image
dataset. On these images we have computed the ridges of their colour distribution and
we have computed their CBCS representation for n = 5. Afterwards we have applied
a constraint satisfaction search on these channel and we have selected those dimensions
minimizing interchannel correlation, we have done it for m = 3.

This experiment has allowed to compare this new representation to the classical RGB
representation. While the RGB representation presents a mean inter-channel correlation
of 2.41, the CBCS space for m = 3 achieve a mean inter-channel correlation of 1.29.

In figures 5 and 6 we show some examples of the 3-dimensional CBCS we have
computed by applying the minimum inter-channel correlation criterion.

In fact, in figure 5 we could see from image 5.(a), their RGB channels 5.(b),5.(c),5.(d)
in RGB order, and, as in this case CBCS space has been done with n = 5 and m = 3, five
CBCS channels where 5.(e),5.(f),5.(g) are the channels selected by the Constraint Satis-
faction algorithm and 5.(h),5.(i) are the rejected ones. We can see that in RGB channels
information could be essentially found in 5.(b). On the other hand, in CBCS channels
we found some regions of the plants in 5.(e), the sky in 5.(f), and the red flowers in 5.(g).
In this channel we could also try to find yellow flowers with a detection of low intensity
blobs. Furthermore, we can see that refused channels 5.(h),5.(i) are quite similar to 5.(e),
this means they have a great correlation coefficient between them.

Finally, in figure 6 we can see the CBCS channels of some images (images on the
left of each group), and, multiplying each channel by the image (images on the right), it
it easy to percept what is the detected part of the image in this channel. For example, in
6.(b) it is quite clear that we detect the two different kinds of flowers in the second and
the third channel and also one part of the plants in the first. It is also clear that in 6.(c)
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Figure 6. From each group we can see the original image (on the top), our CBCS channels (on the left) and
what happens if we multiplies the original image by each CBCS channel, it means, if we stress the detected
part of the image (on the right)

we are detecting red flowers in the first channel, the mountain of behind of the image in
the second, and the nearest trees in the third. 6.(a) and 6.(d) show good results too.

5. Conclusions and further work

In this work, we have done a first step in our idea of adapting colour information to help
texture descriptors. Results,as could be seen in section 4 are quite encouraging. But, this
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is only a preliminary work that has opened some interesting ways to continue.
Firstly, considering that CBCS space is not linear some problems can appear, such

as an ambiguous representation when two symmetric points in different directions of
a given ridge becomes the same value in all the channels. This could be an important
problem in some applications but, in the blob detecting case, as this points have different
neighbours, d1 will respect the inherent structure of the blob.

Another important research line is to make this space fully recoverable. Currently,
we could do an approximation if we save the RGB values of the pixel pmax that has
maximum intensity in the channel, and a 3D matrix, puting in its position (i, j) the values
of the vector that starts in the RGB values of pmax and finishes in the RGB values of the
pixel(i,j).

Some other further work that could be done is to change the constraints of the CSF.
This would be important if we want to extend our colour space to other different appli-
cations.

Finally, the introduction of colour names [1] could improve the method with two
different objectives. On the first hand, we should discard those ridges having two differ-
ent names, since they can introduce confusion. On the other hand, we should join ridges
sharing the same colour name. These could allow to introduce robustness in the first steps
of the algorithm.
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