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Fig. 1: Overview of our ColorPeel for personalized color prompt learning. Given the
RGB triplets or color coordinates, ColorPeel generates basic 2D or 3D geometries with
target colors for color learning. This facilitates the disentanglement of color and shape
concepts, allowing for precise color usage in image generation.

Abstract. Text-to-Image (T2I) generation has made significant advance-
ments with the advent of diffusion models. These models exhibit re-
markable abilities to produce images based on textual prompts. Current
T2I models allow users to specify object colors using linguistic color
names. However, these labels encompass broad color ranges, making it
difficult to achieve precise color matching. To tackle this challenging task,
named color prompt learning, we propose to learn specific color prompts
tailored to user-selected colors. Existing T2I personalization methods
tend to result in color-shape entanglement. To overcome this, we gen-
erate several basic geometric objects in the target color, allowing for
color and shape disentanglement during the color prompt learning. Our
method, denoted as ColorPeel , successfully assists the T2I models to
peel off the novel color prompts from these colored shapes. In the ex-
periments, we demonstrate the efficacy of ColorPeel in achieving precise
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color generation with T2I models. Furthermore, we generalize Color-
Peel to effectively learn abstract attribute concepts, including textures,
materials, etc. Our findings represent a significant step towards improv-
ing precision and versatility of T2I models, offering new opportunities
for creative applications and design tasks. Our project is available at
https://moatifbutt.github.io/colorpeel/.

Keywords: Diffusion Models · Color Prompt Learning · Generative AI

1 Introduction

Text-to-Image (T2I) generation has seen enormous improvements since the ar-
rival of diffusion models [5, 39, 40, 45, 47]. These models, which are trained on
an enormous amount of pairs of images and captions, have remarkable ability
to generate images guided by user text prompts. In combination with inver-
sion methods [17, 33, 34, 49, 50], these models can be used to edit real-world
images [4,19,37,52,56], e.g., by replacing objects, modifying attribute intensity,
changing background, etc. In this paper, we focus on the capabilities of diffusion
models to generate objects of a precise color. This capability plays a pivotal role
in design, fashion and art, where it is important to generate objects in the exact
color envisaged by the user [48].

Current T2I diffusion models [20,38,42] allow users to specify color of gener-
ated object using color names [3,53], which are linguistic labels like ‘red’, ‘green’,
and ‘blue’. However, these color names encompass a wide range of object re-
flectance, and even when using more precise color names like ‘beige’ or ‘light
green’, the generated results may not precisely match the intended color. This
discrepancy arises as language represents color in a discrete manner, whereas
color is a continuous concept. Therefore, opting for an approach that enables
users to select an exact color from a color palette is more desirable. This approach
will provide users with precise control over colors of the generated objects.

To address the challenge of precise color generation, we set out to learn
specific color prompts for the color selected by a user. These colors can then be
used to generate objects of the same color. As a solution to the color prompt
learning task, current T2I personalization methods [12, 15, 28, 44] offer a naive
transfer learning approach, by which we can learn color prompt from a patch
entirely in the target color. However, we demonstrate that these baselines fail
to produce satisfactory results because they do not correctly disentangle color
from shape (as evident in Fig. 2). Moreover, attempting to input the exact RGB
values into T2I models result in unsatisfactory results, as demonstrated in Rich-
Text [14] (see Fig. 10 in the supplementary).

To tackle this issue, we propose to generate a set of basic geometric objects
with the target color (in 2D or 3D shapes as shown in Fig. 1) and then use these
instance images to learn the color prompts. Furthermore, we apply a new cross-
attention alignment loss that further improves disentanglement. Subsequently,
we obtain a series of tokens representing the target colors and shapes. This
disentanglement-based learning approach, termed ColorPeel , effectively assists

https://moatifbutt.github.io/colorpeel/
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Fig. 2: Analyzing Color Fidelity and Transferability. Given RGB values (of blue color)
in the text prompt, Stable Diffusion fails to generate desired objects in specified
colors and also lacks consistency in color fidelity when provided with specific color
names. Comparatively, seminal new concept learning methods Textual Inversion
and Dreambooth generate text-guided objects in specified colors; however, these are
single concept learning baselines and also fail to generate consistent colored objects.
Custom Diffusion — multi-concept learning baseline, inter-mixes the colors while
also reducing the sample variation, which leads to unintended outcomes.

the T2I diffusion model in acquiring the ability of color prompt learning by
peeling off the color attributes from geometric shape objects.

In the experiments, we first demonstrate that the learned color prompts can
effectively generate objects in the desired target colors, whether these colors are
coarse-grained or fine-grained. We then evaluate the precision of the generated
colors by computing color difference metrics and conducting user studies, which
confirm that ColorPeel outperforms various baseline methods. Additionally, we
illustrate how these prompts can be utilized for image editing by recoloring ob-
jects from input images. We also explore interpolation between various learned
color prompts. Finally, we investigate the generalizability of ColorPeel by ex-
tending the training scheme to learn textures and materials from user input. To
summarize, we have the following contributions:
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– This paper is the first to tackle the color prompt learning problem, a crucial
aspect in content creation. This addresses the need of T2I model users to
generate precise colors, which is vital in various creative endeavors.

– We introduce ColorPeel , an effective solution accompanied by a novel cross-
attention alignment loss. This method is designed to tackle the challenges
of color learning by disentangling colors and shapes from the automatically
generated geometric objects with target colors.

– Our method outperforms other T2I approaches by a large margin on quan-
titative results and a user study. We further show that our method can be
extended to textures and material properties.

2 Related Work

Transfer learning for T2I models. Transfer learning for T2I models is also
referred to T2I model adaptation or personalized generation. It aims at adapting
a given model to a new concept by given images from the users and bind the
new concept with a unique token. As a result, the adaptation model can generate
various renditions for the new concept guided by text prompts. Depending on
whether the adaptation method is fine-tuning the T2I model, they are catego-
rized into two main streams: (1) Fine-tuning the T2I model. One of the most
representative methods is DreamBooth [44], where the pretrained T2I model
such that it learns to bind a unique identifier with that specific subject given
3∼5 images. Custom Diffusion (CD) [28] and other approaches [7,13,16,30,46,59]
are also following this pipeline and improving the generation quality. (2) Freeze
the T2I model. Another stream focuses on learning new concept tokens instead
of fine-tuning the generative models. Textual Inversion (TI) [12] is a pioneering
work focusing on finding new pseudo-words by conducting personalization in
the text embedding space. Following works [9,10,15,55] continue to improve this
technique stream.

Despite existing T2I model adaptation methods have been successful in learn-
ing new concepts from a set of relevant images, they have overlooked the user’s
requirement to generate objects with custom-defined colors, and have thus strug-
gled to meet this challenge. In this paper, our objective is to develop a learning
scheme for these methods, equipping them with the ability for color prompt
learning. This enhancement expands the potential of existing T2I adaptation
methods in artistic creation. While there have been several papers addressing
the extraction of multiple concepts from a single image [1, 31, 36, 54, 57], these
efforts predominantly concentrate on extracting concrete concepts implicitly. For
example, Break-a-Scene [1] aligns the cross-attention maps with segmentation
masks to learn new concepts separately for each object. Concept Decomposi-
tion [54] disentangles one object implicitly into several concepts. However, as
they cannot ensure clean disentanglement between the concrete and abstract
concepts, they are not directly applicable to the color prompt learning.
Text-Guided Image Editing. With the recent progress of T2I models [5,
11, 22, 39, 40, 45], various text-guided image methods [6, 18, 29, 32, 34, 58] are
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explored to adopt such T2I models for controllable image editing. Imagic [25] and
P2P [19] attempt structure-preserving editing via Stable Diffusion (SD) models.
InstructPix2Pix [4] is an extension of P2P by allowing human-like instructions for
image editing. To make P2P capable of handling real images, Null-Text inversion
(NTI) [34] proposed to update null-text embeddings for accurate reconstruction
to accommodate with classifier-free guidance [21]. Following approaches [8, 37,
52] deal with text-guided image editing through various techniques, they can
be further explored in survey papers [2, 23, 24]. Nonetheless, existing methods
heavily depend on the expressive power of the underlying T2I diffusion models
and struggle to efficiently control the color attributes of generated objects for
tasks like image editing or generation. In this paper, in addition to learning
specific tokens for user-requested novel colors, we also conduct experiments to
generate images using newly learned color tokens.

3 Method

In this section, we describe our method ColorPeel to achieve color prompt learn-
ing. An illustration of ColorPeel is shown in Fig. 3.

3.1 Preliminaries

Latent Diffusion Models. In this paper, we use Stable Diffusion v1.4 as the
backbone model, which is built on the Latent Diffusion Model (LDM) [42]. The
model is composed of two main components: an autoencoder and a diffusion
model. The encoder E from the autoencoder component of the LDMs maps
an image I into a latent code z0 = E(I) and the decoder reverses the latent
code back to the original image as D(E(I)) ≈ I. The diffusion model can be
conditioned on class labels, segmentation masks or textual input. Let τθ(y) be
the conditioning mechanism which maps a condition y into a conditional vector
for LDMs. The LDM model is updated by the noise reconstruction loss:

  L_{LDM} = \expec _{z_0 \sim \encoder (x), y, \epsilon \sim \mathcal {N}(0, 1)} \underbrace {\left ( \Vert \epsilon - \model (z_{t},t, \conditioner (y)) \Vert _{2}^{2} \right )}_{\mathcal {L}_{rec}}. \label {eq:loss}   


  

 


 (1)

The neural backbone ϵθ is a conditional UNet [43] which predicts the added
noise. In particular, text-guided diffusion models aim to generate an image from
a random noise zT and a conditional input prompt P. To distinguish from general
conditional notation in LDMs, we itemize textual condition as C = τθ(P).

The cross-attention maps in the Stable Diffusion UNet module (SD-UNet)
between textual input and images, can be obtained from ϵθ(zt, t, C). They are
computed from deep features of the noisy image fzt which are projected to a
query matrix Qt = lQ(fzt), and textual embedding which is projected to a key
matrix K = lK(C). Then the attention map is computed according to:

  \mathcal {A}_t=softmax(Q_t \cdot K^T / \sqrt {d})    

 (2)
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Fig. 3: Illustration of our method ColorPeel . Firstly, instance images along with the
templates are generated, given the user-provided RGB or color coordinates. Next, we
introduce new modifier tokens, i.e., s∗i and c∗i which correspond to shapes and colors to
ensure the disentanglement of shape from color. Following Custom Diffusion, the key
and value projection matrices in the diffusion model cross-attention layers are optimized
along with the modifier tokens while training. To improve learning, we introduce cross
attention alignment to enforce the color and shape cross-attentions.

where d is the latent dimension, and the cell [At]ij defines the weight of the j-th
token on the i-th token.
T2I model transfer learning. Given a pretrained T2I diffusion model, T2I
adaptation methods [12,28,44] aim to embed a new concept in the model given
few images along with text description. The fine-tuned model should retain its
prior knowledge, allowing novel generations with new concept based on the text
prompt. As a common practice, novel token learning via text encoding is applied.

To personalize the target concept images, a corresponding text caption is
necessary. In scenarios where the target concept represents a unique instance
within a broader category, a new modifier token V∗ is introduced. During train-
ing, V∗ is initialized with a rare occurring token embedding and optimized with
customized losses. Furthermore, for fine-tuning based transfer learning meth-
ods, they also update conditional SD-UNet partially (like CD [28]) or fully (like
DB [44]) to obtain better learning performance.

3.2 Color Prompt Learning

Despite the wide application of existing adaptation methods in learning new
concepts, they mainly focus on prompt learning for concrete concepts and gen-
erally ignore changing attributes, like color attributes. In this paper, we refer to
this task as color prompt learning. We observe that the naive approaches cannot
solve this task (as shown in Fig. 2). These methods fail to disentangle the color
information from the training images.

Therefore, we propose to generate a series of geometric shapes with target
colors to disentangle (or peel off ) the target colors from the shapes. By jointly
learning on multiple color-shape images, we found that the method can success-
fully disentangle the color and shape concepts. For simplicity, we further denote
the target color concepts as c∗ and shape concepts as s∗. There should be at
least two shapes s∗i , s

∗
j with the same target color c∗ for the model to analogize
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Fig. 4: Cross attention visualization. We compare the cross attention maps from the
last timestep of Custom Diffusion and ColorPeel . Our method precisely learns color
from the given concept while distinctively avoiding the overlapping with background,
which is one of the main reasons for color inter-mixing in the baseline.

the color attribute. In this paper, we consider two sets of shapes (see Fig. 12
in supplementary) one set of 2D shapes and another of 3D shapes. Since the
3D shapes undergo physical transformation such as shading and shadow effects,
which are also present in the generated images, we expect these to yield im-
proved color prompts compared to those learned from 2D shapes. The images
are corresponding to prompts P like: “A photo of s∗i filled with c∗”, “A photo
of s∗j shape with c∗ color”, etc. More information on the prompt templates are
provided is Section C.4.

In order to learn the novel color token embeddings Vc∗
, we randomly sample

an image from our small training set, which depict our target color in various
shapes. We directly optimize new tokens (Vc∗

, Vs∗) and the SD-UNet (optional
for Custom Diffusion, DreamBooth, etc.) by minimizing the LDM loss as defined
in Eq. 1. In this way, our optimization goal can be defined as

  \concept = \underset {\tokenset }{\arg \min } \ \expec _{z_0 \sim \encoder (x), y, \epsilon \sim \mathcal {N}(0, 1)} \; \mathcal {L}_{rec} \label {eq:token_loss}  


   (3)

This is optimized by re-using the same training strategy as the original LDM
model. As such, we aim to encourage the learned embedding to capture fine
visual details unique to the concept.
Cross-Attention Alignment (CAA). Using only Eq. 3 results in some im-
provement over the baseline, but the generated colors do not accurately depict
the target color and sometimes struggle to correctly disentangle color from shape.
By visualizing the cross-attention maps from the SD-UNet modules (as shown in
Fig. 4 and further illustrated in Fig. 11 in the supplementary), we hypothesize
the misalignment between the color and shape attentions are the root of this un-
satisfactory performance. Intuitively, we propose the cross-attention alignment
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(CAA) loss to achieve agreement between these cross-attentions, as defined by
the cosine similarity between the cross-attention maps:

  \mathcal {L}_{caa} = 1-\mathrm {cos} (\crossattn _t^{\colortoken },\crossattn _t^{\shapetoken }) \label {eq:caa_loss}.  



  (4)

This loss is motivated by DPL [56], however, DPL is reversed to minimize overlap
of attention between different objects. Our final optimization function is:

  \concept = \underset {\tokenset }{\arg \min } \ \expec _{z_0 \sim \encoder (x), y, \epsilon \sim \mathcal {N}(0, 1)} \; \Big [ \mathcal {L}_{rec} + \lambda \cdot \mathcal {L}_{caa} \Big ] \label {eq:final_loss}  





   


(5)

where λ is the trade-off hyperparameter. In conclusion, in this paper, “disen-
tanglement” refers to the process of decoupling shapes and colors from a set of
auto-generated colored geometries. The CAA loss encourages both shapes and
colors to concentrate on the correct regions instead of background areas with-
out pertinent concepts. This mechanism improves the accurate capture of the
intended attributes.
Training scheme. ColorPeel ensures that the color token c∗ effectively extracts
color attributes from a given image while disentangling them from the shapes. As
a secondary benefit, it also allows the shape token s∗ to learn novel shapes that
are not present in the T2I diffusion models. In our experiments, we demonstrate
that disentangling both colors and shapes leads to significantly better perfor-
mance than disentangling color attributes alone. For successful disentanglement,
each color should have at least two shapes, and vice versa.

4 Experiments

4.1 Experimental setup

Dataset. Colors of objects in real-world images are influenced by various scene
factors like illuminant color, viewing angle, and shadows. To assess learning per-
formance of ColorPeel , we develop an automatic color synthesizer capable of
generating basic 2D and 3D shapes with specified colors and shapes using RGB
triplets. For the 2D dataset, we incorporate the shapes circle, square, hexagon,
and triangle. For the 3D dataset, we curate a small collection comprising 200
images of 3D shapes with attributes such as colors, textures, reflectance, and
lighting. Our blender-designed dataset encompasses five 3D shapes: sphere, cylin-
der, hexagon, cube, and cone. For color prompt learning, we create two subsets:
coarse-grained (red, green, blue, yellow) and fine-grained (18 colors related to
less common color names, including ’salmon’,’beige’, etc). Users can synthesize
shapes in any desired color using our dataset synthesizer, given the RGB triplet.
Further details regarding our dataset are available in Section C.2.
Evaluation metrics. Quantitatively analyzing colors in T2I generation poses
notable challenges including lighting variation, reflections, and illuminant tem-
perature which can lead to inaccuracies in the analysis. To address these chal-
lenges effectively, we compute the following metrics: (i) Euclidean Distance in
CIE Lab color space (∆E, ∆ECh when luminance is removed) — to analyze
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perceptual uniformity between the generated and given color, (iii) Mean An-
gular Error (MAE) in sRGB — to understand the color deviation in terms of
chromaticity, and (iii) Mean Angular Error (MAE) in Hue — to analyze the dif-
ference between given and generated color irrespective of brightness and satura-
tion. For each comparison method, we generated images using 10 prompts, each
with 20 random seeds. After image generation, we use the Segment-Anything
model [27] to derive object masks, delineating regions for the computation of
evaluation metrics. Lastly, we extract our generated object from the image using
the mask and compute the aforementioned metrics based on the user-provided
color. Additional details are provided in Fig. 16 in the supplementary material.
Implementation details. We demonstrate our method ColorPeel in various
experiments based on the open-source T2I model Stable Diffusion [42] following
previous methods [12, 28, 44]. We train ColorPeel with batch size of 2 and a
learning rate of 10−5. For the coarse-color learning, we train the model for 1500
steps. Whereas, we increase training steps to 6000 steps for fine-grained color
learning. All experiments are done on A40 GPUs.
Comparison methods. Firstly, we evaluate Stable Diffusion and Rich-Text [14]
methods to analyze the color generation from RGB values, and specific color
names in the text prompts. Secondly, we analyze seminal personalization meth-
ods, including Textual Inversion, Dreambooth and Custom Diffusion. For Tex-
tual Inversion, c∗i and s∗i — two new learnable tokens — are optimized to learn
the color and shape, respectively. Whereas, for Dreambooth, c∗i and s∗i are ini-
tialized with the existing rare tokens, which are optimized along with all the
parameters in the diffusion model. We also compare with the Custom Diffusion
baseline, which optimizes the c∗i and s∗i for color and shape, along with key and
value projection matrices in the diffusion models. Following [28], TI and DB are
optimized for 4000 steps, while CD is optimized for 1500 steps to perform the
coarse-grained learning task. More details on the compared methods are included
in the supplementary material.

4.2 Qualitative Comparisons

In Fig. 6 and Fig. 7, we show the performance of ColorPeel applied in both situ-
ations of color prompt learning: coarse-grained and fine-grained color concepts.
Coarse-Grained color concepts. First, we conduct experiments over coarse
colors including red, green, blue, and yellow to analyze the learning of color
prompts from given colored shapes and their transferability to real concept com-
positions. To evaluate if ColorPeel is correctly disentangling the colors from
shapes, we optimize c∗i and s∗i to learn the color and shape in the training set.
The results are illustrated in Fig. 5 which show that ColorPeel can efficiently
generate the concepts in the user-provided colors. In particular, our method can
generate precise colors for both the single and multiple concepts ranging from
objects in complex scenes to intricate attributes such as eye color of the cat,
wings of the parrot and more.

In the next step, we analyze the color transferability of ColorPeel to real-
world scenarios and compare with Custom Diffusion, Textual Inversion, and
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Fig. 5: Qualitative results of ColorPeel in single color and multi-color compositions.

Dreambooth. From Fig. 6, it can be observed that ColorPeel generates more re-
alistic concepts as compared to the existing new-concept learning methods. Un-
like Textual Inversion and Dreambooth, which tend to ignore the target prompt,
ColorPeel ensures the high quality color transferability in terms of consistency
and fidelity. Moreover, we did not observe any evidence of overfitting in the gen-
erated results. We hypothesize that this is because colors are abstract in nature
in contrast to the learning of real objects from images—which may align with
the prior knowledge of stable diffusion.
Fine-Grained color concepts. Next, to illustrate the efficacy of ColorPeel , we
design the harder task as composing with fine-grained concepts. Here we leverage
our fine-grained color learning dataset which contains several variants of colors
such as blue, cyan, navy, indigo (see Section C.2 for details) to learn fine-grained
colors and illustrated the results in Fig. 7. As can be seen, it is evident that
ColorPeel efficiently distinguishes the fine-grained colors and generates highly
detailed concepts aligning with the given text prompts. Other than high quality
image generation, ColorPeel also demonstrates efficient customization of various
elements ranging from personalized dressing concepts (such as clothes, footwear,
gloves, glasses) to toys/objects in different scenarios.
ColorPeel generalizability. Other than learning colors, ColorPeel can be ex-
tended to learning texture and material from the user-provided input image as
shown in Fig. 8. Similar to the color prompt learning, firstly, the given 2D texture
image is mapped on to the 3D shapes such as sphere or cube, using our dataset
synthesizer. As a result, we get the train examples for textures (Fig. 8a) and
materials (Fig. 8b). Secondly, we denote the target texture and material as t∗

and m∗, respectively. In the next step, to learn novel texture and material token
embeddings (Vt∗ , Vm∗

), we randomly sample an instance image from our small
training set, which depict our target material and texture in various shapes. We
directly optimize new tokens (Vt∗ , Vm∗

) as discussed in section 3.2.
Color token interpolation. We also included an initial linear interpolation
result between two color tokens, which shows that already ColorPeel can repre-
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Target Color

a women wearing <c1*> glasses a <c1*> basket in the garden

a <c4*> backpack on a study table a  <c4*> boat in the water

a  <c3*> parrot perched on a tree a fashion model wearing <c3*> dress

a  <c2*> flower in the wooden pota  <c2*> teddybear in Time Square

Ours Custom Diffusion Textual Inversion Dreambooth Ours Custom Diffusion Textual Inversion Dreambooth

Fig. 6: Qualitative results on the coarse-grained color prompt learning task compared
with other T2I model adaptation methods including CustomDiffusion [28], Dream-
Booth [44] and Textual Inversion [12].

sent the colors continuously between the learned color prompts (Fig. 8c). This
can avoid the training for new colors. In Section C.9, we also include results with
interpolation between several colors.
Image editing. For text-guided image editing, we follow the P2P [19] approach
by swapping the cross-attention maps during the inference stage. The corre-
sponding image editing results are shown in Fig. 8d, where we successfully mod-
ify the color of the teddybear into our learned colors. More examples are shown
in Fig. 19 the supplementary.

4.3 Quantitative Analysis

We compare ColorPeel with: (i) T2I generation — Stable Diffusion v1.4, and
Rich-Text [14] based on Stable Diffusion(SD), and (ii) personalization meth-
ods — DreamBooth(DB), Textual Inversion(TI) and Custom Diffusion(CD).
For each method, we generated images, and extract the mask of the object—
discussed in section 4.1. The results are summarized in Table 1, where they are
provided as the Median for all the images. Percentages in MAE metrics denote
the percentage of pixels inside the mask used for the computation (selecting those
closest to the ground truth). This table clearly show the superiority of ColorPeel .
Particularly, ColorPeel achieved notably lower ∆E error in CIE Lab color space
as compared to the existing methods which indicates that ColorPeel generates
perceptually better colors. In addition, ColorPeel also achieved comparatively
much lower mean angular error in both sRGB and Hue, which signifies a higher
degree of color accuracy in terms of chromaticity and hue in our generated im-
ages. To demonstrate the adaptability of our method, we integrated ColorPeel
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Fig. 7: Qualitative results of fine-grained color learning. From customizing back-
grounds, dresses, and shoes to eyes, our method ColorPeel can generate high-quality
variations in fine-grained color concepts.

Table 1: Quantitative comparison with base-
lines over various evaluation metrics. All
numbers are the smaller the better (↓). Best
result is in bold, second best is underlined.

Method ∆E ∆Ech
MAE (rgb) MAE (Hue) Time

10% 50% 100% 10% 50% 100% (min)

SD [42] 47.45 41.55 12.89 20.04 26.93 30.17 54.14 86.38 -
Rich-Text [14] 36.62 32.48 9.91 13.29 18.53 50.55 72.77 93.51 -

TI [12] 48.98 44.29 15.22 19.51 23.90 52.66 69.35 90.88 118
DB [44] 50.71 46.29 14.75 19.30 23.70 47.12 67.13 88.72 56
CD [28] 48.47 42.23 13.43 17.93 22.43 31.63 55.07 78.43 24

ColorPeel (3D) 21.39 16.51 4.36 7.76 12.08 2.63 6.47 21.35 19ColorPeel (2D) 20.45 15.29 4.83 7.88 12.13 3.18 7.43 21.46

Table 2: Ablation study over hyperpa-
rameters λ on ColorPeel (3D). All num-
bers are smaller the better (↓). Best re-
sult is in bold.

λ ∆E ∆ECh
MAE (rgb) MAE (Hue)

10% 50% 100% 10% 50% 100%

0.0 (CD) 48.47 42.23 13.43 17.93 22.43 31.63 55.07 78.43
0.1 22.23 16.86 5.13 8.63 12.75 3.48 10.54 36.36
0.2 21.39 16.51 4.36 7.76 12.08 2.63 6.47 21.35
0.4 23.37 17.10 4.91 8.46 12.77 3.87 8.65 24.94
0.6 23.53 16.75 4.97 8.48 13.25 2.89 8.96 28.39
0.8 23.79 17.01 4.98 8.57 13.50 4.06 13.80 33.54
1.0 24.43 18.64 5.03 8.69 13.77 4.27 10.48 34.35

with DreamBooth to analyze its performance. The results show that ColorPeel
significantly enhances DreamBooth’s performance, particularly in terms of color
accuracy in the generated images. Some of the examples are demonstrated in
supplementary (see Fig. 22).
User study. We conducted a user study with 15 participants to perceptually
evaluate our results, comparing ColorPeel against TI, Rich-Text, DB, and CD.
The experiment was conducted in a controlled lab environment to ensure the re-
liability of our study. All observers were tested for correct color vision using the
Ishihara test. The experiment employed a two-alternative forced choice (2AFC)
method. Observers were presented with three images on a monitor set to sRGB.
The central image represents the desired color. To the left and right, we displayed
the results of the given prompt by our method and one of the competing meth-
ods, with the order randomized. We tested 10 different prompts and 4 different
colors (red, green, blue, and yellow), consistent with the quantitative analysis.
We analyzed the results by comparing ColorPeel to each of the others using
the Thurstone Case V Law of Comparative Judgment model [51]. This method
provided us with z-scores and a 95% confidence interval, calculated using the
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Fig. 8: Demonstrating generalization of ColorPeel to (a) Texture Learning, (b) Mate-
rial Learning, (c) Color Interpolation, and (d) Image Editing.

method proposed in [35]. The results are presented in Fig. 9b. We observe that
our approach ColorPeel is statistically significantly better than any of the com-
peting 4 algorithms. These findings underscore the effectiveness of ColorPeel in
generating more realistic and accurate colors given an RGB triplet.
Ablation Study. In Fig. 9a, we conduct ablation studies over various factors.
Here we analyze the disentanglement and transferability of colors to the real
objects. We note that by removing the cross attention alignment loss, the model
struggles to disentangle the color from the shape and fails to preserve the iden-
tity. Moreover, we can see that the model generates inconsistent colors when
λ in CAA is scaled up or down in the cross-attention alignment loss, which is
also reflected in Table 2. Note that with λ = 0.0, ColorPeel degrades to CD,
that shows attention leakage (see Fig. 11) and failures in color generations (see
Fig. 2, Fig. 10). We also show λ = 0.0 results in Fig. 9a and Table 2. To further
analyze the role of CAA in disentanglement of shape from color, we reproduce
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(a) Ablation Study
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(b) Human Study

Fig. 9: Illustration of ablation and psychophysical (human) study. (a) We remove
cross attention alignment loss, and scale lambda to demonstrate the effect on color
fidelity and transferability in image generation. As can be seen, the model fails to
disentangle the shape and color when our proposed cross attention alignment (CAA)
loss is removed. (b) Thurstone case V results of our user’s study. Values are z-scores.
Error bars represent 95% confidence intervals —see [35]. Our method is statistical
significantly better than existing methods —CD, DB, Rich-text, and TI.

the instance prompt without CAA, and note that the model tends to ignore the
target text prompt, replicates the instance images, while also failing to transfer
the colors to other shapes (see Fig. 23 in supplementary). Attention leakage has
been studied in T2I generation [41], but not explored in T2I personalization.
This problem is address by our CAA loss.

5 Conclusion

Text-to-Image (T2I) diffusion models have encountered challenges when gener-
ating specific object colors using linguistic color names, referred to as the color
prompt learning task. Existing T2I models and adaptation methods struggle
to tackle this challenge effectively. In this paper, we propose a method called
ColorPeel to learn specific color prompts tailored to user-selected colors. We
achieve this by generating basic geometric objects in the target color and em-
ploying disentanglement to peel off the color from the shapes. These tailored
prompts are then used to generate objects with the desired colors precisely. Col-
orPeel enhances the precision of color generation within the T2I framework, and
our experimental results demonstrate its effectiveness. Moreover, we showcase its
utility in real-world applications such as recoloring objects within images and its
generalizability in learning new textures, material, etc. In summary, our research
contributes to improving the precision and versatility of T2I models, opening up
new possibilities for creative applications and design tasks. By addressing the
challenge of precise color specification, ColorPeel advances T2I technology and
holds promise for various practical applications.
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Supplementary Material

A Boarder Impacts and Limitations

Boarder Impacts. The application of T2I models in image editing and gen-
eration offers extensive potential for diverse downstream applications, enabling
the adaptation of images to different contexts. In particular, synthesizing objects
in the precise colors has diverse applications, however, it is a challenging task
for diffusion models. Our ColorPeel can help the users to customize their desir-
ing objects in the precise colors, given an RGB triplet or color picker, resulting
in significant time and resource savings. Notably, current methods have inher-
ent limitations, as discussed in this paper. However, our model can serve as an
intermediary solution while offering valuable insights for further advancements.
Limitations. While our method ColorPeel can achieve high-fidelity personal-
ization diffusion models with color prompt learning, it is not free of limitations.
Firstly, colors encompass a vast spectrum that extends to countless combina-
tions of hues and shades. Therefore, it is hard to learn such wider range of color
concepts with current approach due to inherent limitations of T2I personaliza-
tion methods such as identity preservation. In future research, we aim to explore
learning a color grid of tokens, allowing users to interpolate the color combina-
tions, to avoid training for new colors. Secondly, in the current study, we do not
explicitly decompose reflectance and illumination, which could limit application
in unusual lighting scenarios.

B Learning Colors with Existing Methods

Here we dive into the challenges associated with synthesizing objects in desired
colors using current state-of-the-art T2I diffusion or personalization methods. As
elucidated in the paper, current T2I diffusion models offer users the ability to
generate objects in desired colors by incorporating linguistic color descriptions
in the prompts. Although these diffusion models have showcased remarkable ca-
pabilities in generating images from textual prompts, they encounter challenges
in accurately reproducing specific colors. One of the primary reasons for this
limitation is the broad spectrum of colors encompassed by linguistic color names
(e.g., pink, blue, green), which can represent numerous combinations of hues
and shades. For example, the color blue alone encompasses various shades such
as navy blue, sky blue, royal blue, cobalt blue, and denim blue. Consequently,
the generated images may not exactly match the intended color. As depicted in
the examples presented in Fig. 10(a) and Fig. 10(c), even when prompted with
standard color names, the stable diffusion model [42] and Rich-Text method [14]
struggle to distinguish between different color variants.

Another method of specifying precise colors is by including exact color values
or hex color codes in the prompts to synthesize objects. The results depicted in
Fig. 10(b) reveal that the diffusion model struggles to interpret hex color codes
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Fig. 10: Visualizing failure compositions with existing methods. It can be noticed
from the results that Stable Diffusion fails to comprehend (a) (c) RGB Triplets and
(b) hex color code directly. Whereas, multi-concept personalization method i.e., (d)
Custom Diffusion struggles to learn color embeddings from plain images, which results
in color intermixing in the generated outputs.
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or RGB values directly, as these models lack embeddings for such representa-
tions. Next, we consider T2I personalization methods to learn color embeddings
based on new text tokens. We use well-established T2I personalization baselines,
including TI [12], DB [44], and CD [28]. First, we learn color embeddings from
fully-colored images using RGB/hex values. However, as shown in Fig. 10(d),
these methods employ a naive transfer learning approach. While they are able
to learn shapes or objects, they fail to effectively learn from plain color images.
To gain further insight into this issue, we extract attention maps from the fi-
nal timestep of the training process, as illustrated in Fig. 11. It is evident from
Fig. 11(a) that the employed personalization methods struggle to focus on the
color region when the entire image is colored. To address this limitation, we
generate basic 2D/3D shapes using the RGB/hex values. Surprisingly, with this
training setup, we observe that the employed methods, while still performing
poorly, show some focus on the color regions. However, as demonstrated in the
main paper, these methods tend to mix colors due to non-aligned token initial-
ization.

C Experiments

C.1 Implementation Details

We train our ColorPeel with a batch size of 1 and a learning rate of 10−5. For
coarse-color learning, we train the model for 1500 steps. However, we increase
the training steps to 6000 steps for fine-grained color learning. It is important
to mention that, we follow the same training schema for learning coarse and
fine-grained colors as discussed in the section 3, for analyzing the disentangle-
ment between the shapes and colors, along with the transferability of colors to
unknown shapes/objects. To ensure faster convergence, we only back-propagate
the valid regions’ loss combined with the cross-attention alignment loss to im-
prove learning.

C.2 Dataset Details

As discussed in the previous section, colors have a countless range of combina-
tions, due to different hues and shadings. Therefore, it is also crucial to prepare
training-data/instance-images in the precise desired color. To handle this chal-
lenge, we introduce a data synthesizer in our ColorPeel, which acts as a process-
ing step in the pipeline. In particular, our method is capable of creating basic 2D
and 3D shapes, given the desired RGB-Triplet, hex-Code, or Color-Coordinates.
In 2D-Instances, rectangle and circle shapes are used, whereas, in the case of
3D, five simple 3D-shapes are used including sphere, cube, cylinder, cone, and
hexagon. It is important to mention here that 3d shapes provide more accurate
representation, allowing for better understanding of color variations in differ-
ent spatial dimensions. Therefore, we ensure that our ColorPeel can learn color
embeddings with both the 2D and 3D instance images. For 3D instance image
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Fig. 11: Visualizing cross-attention maps from last time-step. (a) Custom Diffu-
sion—fails to focus on the color in case of fully colored images. In particular, <v1*>
and <v3*> which are supposed to learn colors, are not precisely learning. (b) Dream-
booth—with basic colored shapes in the train images, the shape and color text tokens
i.e., sko, sk, az, and tx are focusing on the color region, however, overlapping with
the other tokens. Similarly, in (c) Textual Inversion, the new text-tokens <s1*>,
<s2*>, <c1*>, and <c2*> are overlapping with other tokens. This can be one of the
reasons which lead to the inaccurate color syntheses in the generated images.
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Fig. 12: 2D and 3D instance images for the coarse-grained color learning task

creation, initially object files containing a scene graph with the shape positioned
in the center of the plane, with three directional area lighting to ensure appropri-
ate visibility, are created in the Blender. Our ColorPeel can render these shapes,
given the RGBs in real-time.

For color prompt learning, we design two color learning tasks: (i) coarse-
grained color learning, which contains four basic colors—red, green, blue, and
yellow, and (ii) fine-grained color learning which covers 18 colors related to less
common color names, including ’salmon’,’beige’, etc. The sample instance 2D
and 3D images for coarse-grained color learning task are shown in the Fig. 12,
and the 3d instance images are demonstrated in Fig. 13 and the list of the color
names along with corresponding RGB values are enlisted in Table 3.

C.3 Additional Qualitative Results

The results our method ColorPeel for the coarse color and fine color learning
tasks are demonstrated in Fig. 14, and Fig. 15, respectively. In addition to gen-
erating high-quality images, ColorPeel also showcases effective personalization
of diverse elements, including customizing attire like clothing, footwear, gloves,
and glasses, as well as toys and objects within different settings. In the next
step, we carefully designed the prompts to evaluate the color transferability in
terms of consistency and fidelity to a wide range of attributes. These attributes
span from image background color customization to personalized elements such
as clothing, eye, hair colors, as well as other objects like chair, dustbin, etc.
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Fig. 13: 3D instance images for the fine-grained color prompt learning task.
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Target Color a <c1*> parrot 
perched on a tree

a men wearing 
<c1*> jacket

<c1*> flower in
in the wooden pot

a cat with <c1*> eyes

a photo of <c4*> chair
on the beach

a labrador wearing
<c4*> collar

a <c4*> backpack
on a study table

a cat wearing
<c4*> glasses

Target Color a <c3*> old barn with
mountains in the

background

a photo of dog
with <c3*> background

a  <c3*> teddybear in
Times Square

a <c3*> dustbin
in the room

Target Color

a lighthouse in 
<c2*> color

a girl wearing <c2*> shoe a  <c2*> flower in
the wooden pot

a  <c2*> teddybear in
Time Square

Target Color

Fig. 14: Qualitative color generation results of the coarse-grained color learning task.
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Table 3: RGB values of colors used to generate coarse and fine-grained color sets.
Coarse-grained color learning tasks covers four basic colors, whereas, fine-grained color
learning task includes 18 colors.

Color RGB Code

Coarse-grained Color Set
Red 191, 15, 37
Green 81, 200, 81
Blue 38, 117, 195
Yellow 215, 208, 41
Fine-grained Color Set

Red 255, 0, 0
Maroon 128, 0, 0
Orange 255, 165, 0
Coral 255, 127, 80
Pink 255, 192, 203
Green 0, 128, 0
Lime 0, 255, 0
Olive 128, 128, 0
Blue 0, 0, 255
Navy 0, 0, 128
Cyan 0, 255, 255
Turquise 64, 255, 208
Indigo 75, 0, 130
Purple 128, 0, 128
Yellow 255, 255, 0
Gold 255, 215, 0
Bisque 255, 228, 196
Wheat 245, 222, 179
Beige 245, 245, 220

C.4 Prompt Templates

Evaluation prompt templates. Here is the list of text prompts used in eval-
uating our proposed method and comparing it with the baseline methods i.e.,
Stable Diffusion, Custom Diffusion [28], Textual Inversion [12], Rich Text [14],
and Dreambooth [44].

– a {color} bowl on the table
– a {color} bowling ball in a bowling alley
– a {color} plate on the table
– a {color} vase on the shelf
– a women wearing {color} pants
– a {color} teddy-bear in Time Square
– a {color} snooker ball on the table
– a {color} parrot perched on a tree
– a {color} sofa in living room
– a {color} rose blooming in a wooden pot
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Target Colors ColorPeel’s Generation

a <c1*> / <c2*> / <c3*> flower in the wooden pot a <c1*> / <c2*> / <c3*> cup on the table

a <c4*> / <c5*> / <c6*> sofa in the living room a <c4*> / <c5*> / <c6*> tree in the garden

<c1*> <c3*><c2*>

<c5*><c4*> <c6*>

a <c7*> / <c8*> / <c9*> payphone in the street a <c7*> / <c8*> / <c9*> cabin in the snow<c8*><c7*> <c9*>

a <c10*> / <c11*> / <c12*> butterfly on the flower a <c10*> / <c11*> / <c12*> hot air balloon in the sky<c11*><c10*> <c12*>

Fig. 15: Qualitative color generation results of the fine-grained color learning task.

Training prompt templates. Initially, we tried optimizing the new text-tokens
with multiple training prompt examples, enlisted below.

– a photo of <s*> shape in <c*> color
– a <s*> shape in <c*> color
– a <c*> colored <s*> shape
– a photo of <c*><s*>

However, ColorPeel achieved better results with single prompt i.e., "a photo of
<c*> shape in <s*> shape" for each instance image, where <s*> and <c*>
are new text-tokens, corresponding to shape and color, respectively.

C.5 Evaluation pipelines

Fig. 16 shows the masking computation. An image is generated given a prompt.
Then, the Segment Anything Model [26] is used to compute the mask of the
generated object —in this figure the red rose, the yellow teddy-bear, or the
blue sofa—. This mask is then used to consider only the object’s pixels for the
computation of the metrics. This said, for some objects they might be some small
parts that are not supposed to have the desired color; for example the eyes of
the teddy-bear. For this reason, in the main paper we computed some measures
considering also the 10%, or 50% of most correct pixels inside the mask. Let us
remind the reader that our method outperformed all the others in all metrics at
under all conditions.
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Fig. 16: Mask Generation for quantitative evaluation. Given an image generated with
a prompt, we compute a mask using Segment Anything model [26] in order to consider
only those pixels that belong to the object.

C.6 User study

Fig. 17 shows our user’s study setup. In the left, we see a picture of the room,
that was completely black and the monitor set to sRGB. The monitor —Fujitsu
B-24-8— was the only light source during the experiment. Observers were seated
approximately 60 cm away from the monitor to ensure a 7-degree visual angle.
The monitor background was set to middle gray. The monitor displayed a prompt
and a central image with the reference color. Left and right from the central
image we randomly showed the results for our method and a competing one.
The observer needed to select which image from the two represented better the
prompt given the color in the middle image. An example of the set-up as seen
by the observer is shown in the right part of Fig. 17. A total of 15 observers
participated in the study, and none of the authors took part in the study.

C.7 Verification of the Color Prompt Learning

We conduct experiments over coarse-grained concepts using the training schema
as shown in Fig. 18 to analyze the learning of color prompts from given colored
shapes and their transferability to other objects. To evaluate if our method
ColorPeel is correctly disentangling the colors from shapes and can transfer to
the unknown ones, as devised in training schema, we learn colors and shapes
given in coarse-grained training set in c∗i and s∗i text-tokens, respectively. The
results are illustrated in Fig. 18, we showcase that with only eight images in
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Black Room Setup Questionnaire

Fig. 17: Setup of our Human Study. Left : Observers were sitting in a black room,
where the only light was the one provided by the monitor. Right : The background of
the monitor screen was fixed to middle gray, and the observers needed to select which
image —left or right— was a better match considering the prompt and the color shown
in the central image.

the 4×4 training scheme, ColorPeel can successfully infer the geometries not
included in the training set. That further proves the effectiveness of our method
ColorPeel .

C.8 Image Editing

Here we demonstrate a few examples of image editing following the P2P method [19]
with our ColorPeel. The corresponding image editing results are shown in Fig. 19,
where we successfully modified the color of the objects to our learned colors.

C.9 Color Interpolation

Here we demonstrate a few examples of linear interpolation between two newly
learned color tokens. The results are shown in Fig. 20 which shows that our Col-
orPeel can represent the colors continuously between the learned color prompts,
which ultimately can avoid the training for new colors.

C.10 Additional Qualitative Comparison

We show the additional qualitative comparison between the generated images
from baselines including Stable Diffusion (SD), Rich-Text, Textual Inversion
(TI), Dreambooth (DB), and Custom Diffusion (CD) against our method Col-
orPeel . The results are shown in Fig. 21 which shows that our ColorPeel can
learn and transfer better photo-realistic colors as compared to the baselines.
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Fig. 18: Training scheme and generating unknown shapes. The instance prompt—"a
photo of <s*> shape in <c*> color" is used to reproduce the shapes with unknown
colors. The generated images are outlined in green border.

Fig. 19: Demonstrating the results of image editing. <c1*>, <c2*>, <c3*>, and
<c4*> corresponds to the embeddings of newly learned colors for the coarse-grained
color learning task. The results show that the object colors can be modified given our
learned embeddings.
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Fig. 20: Linear interpolation between two color tokens.

Fig. 21: Demonstrating qualitative comparison of the generated images with the base-
lines and our method.
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a girl wearing <c3*> 

shoes

a person wearing 

<c2*> coat
a teddy wearing 

<c6*> dress

A kid wearing <c5*> 

gloves

a <c1*> parrot 
perched on a tree

a <c2*> cabin in the 
snow

a <c3*> teddybear 
in Times Square

(B) Fine-grained Color Compositions

(A) Dreambooth w/ ColorPeel

a labrador wearing 
<c4*> collar

Fig. 22: Demonstrating results of (A) DB trained using ColorPeel and (B) additional
fine-grained color generation.

D Ablation Study

We ablate various components of our method to show its contribution, which
are demonstrated in Fig. 23. Firstly, we remove cross attention loss (CAA) and
train the model with the default baseline settings. The results (see Fig. 23a)
demonstrate that the model fails to disentangle the color from the shape, and
replicates the shapes while ignoring the target prompt. We also notice that the
default transformation techniques (resize, zoom, etc.) in the baseline are highly
influencing the reconstruction performance, resulting in inaccurate generation.
Secondly, we use fully weighted cross attention loss combined with the recon-
struction loss to train the model. The results (see Fig. 23b) demonstrate that
model ensures efficient learning and transferability of colors, however, model
fails in accurate shape reconstruction. Thirdly, we trained the model by scaling
down the lambda to 0.7 in CAA loss which improves the color transferability
and shape reconstruction as compared to fully weighted CAA loss. Lastly, we
show the results of our ColorPeel where we train the model by setting lambda
to 0.2 in CAA loss. With this setting, our method achieves comparatively better
performance in terms of color fidelity and consistency, and shape reconstruction.
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(a) Ours w/o CAA Loss

(b) Ours w/ Lambda  * CAA Loss (Lambda = 1.0)

(c) Ours w/ Lambda  * CAA Loss (Lambda = 0.7)

(d) Ours w/ Lambda  * CAA Loss (Lambda = 0.2)

a <s1*> shape in <c1*> /
<c2*> / <c3*> / <c4*> color

a <s2*> shape in <c1*> /
<c2*> / <c3*> / <c4*> color

a <s3*> shape in <c1*> /
<c2*> / <c3*> / <c4*> color

a <s4*> shape in <c1*> /
<c2*> / <c3*> / <c4*> color

Fig. 23: Ablation Study. We ablate various components of our method ColorPeel to
demonstrate their contributions.
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