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ABSTRACT

High dynamic range imaging techniques involve capturing and storing real world radiance values that span many
orders of magnitude. However, common display devices can usually reproduce intensity ranges only up to two to
three orders of magnitude. Therefore, in order to display a high dynamic range image on a low dynamic range
screen, the dynamic range of the image needs to be compressed without losing details or introducing artefacts,
and this process is called tone mapping. A good tone mapping operator must be able to produce a low dynamic
range image that matches as much as possible the perception of the real world scene. We propose a two stage
tone mapping approach, in which the first stage is a global method for range compression based on a gamma
curve that equalizes the lightness histogram the best, and the second stage performs local contrast enhancement
and color induction using neural activity models for the visual cortex.

Keywords: Tone mapping, high dynamic range, low dynamic range, neural model, psychophysical model, visual
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1. INTRODUCTION

The dynamic range (DR) of real world scenes may be up to seven orders of magnitude, however consumers display
have a low dynamic range (LDR) of between two and three orders of magnitude. Thus for many natural scenes
it is impossible to truthfully display the absolute luminance values found in the original scene. Tone mapping
operators (TMOs) are designed to transform high dynamic range (HDR) scene values such that the appearance
is as close to that of the original scene as possible. In the words of Ward et al.,! a good TMO should preserve
both the detail and the feel of the original image.

The tone mapping problem was formerly introduced into the field of computer graphics by Tumblin and
Rushmeier.? Over the last few decades a diverse number of TMOs have been proposed. Broadly speaking TMOs
can be classified into two categories: local and global. Global TMOs apply a global pixel-wise non-linearity to the
image, the non-linearity invariably performs some degree of histogram equalisation however the motivation and
choice of non-linearity used are diverse: Tumblin et al.? uses Stevens’ law, Pattanaik et al.> and Reinhard et al.*
use the Naka-Rushton equation, Ferwerda et al.® use a psychophysical method of adaptation, while Ashikhmin
et al.5 use the Weber-Fechner law. In more detail, Reinhard and Devlin* use a modified Naka-Rashton formula,
based on the intuition that the tone mapping problem is similar to the adaptation process in the human visual
system. The tone mapping operator by Drago et al.” uses an adaptive logarithmic curve, which is a collection of
logarithmic curves ranging from logs to logig selected based on the pixel intensity. Ward et al.! used a histogram
adjustment technique to perform tone mapping. The tone mapping curve is the cumulative histogram of the
density image (log intensities) that is modified by perceptual constraints. A piece-wise linear tone mapping
curve is introduced by Mantiuk et al.® The intermediate points in the curve are adjusted in such a way that the
difference between the estimated human visual system responses for the original and its tone mapped version is
minimized. Generally global TMOs are very fast and produce no artefacts or halos, but they can not guarantee
the visibility of all image regions. Local TMOs manipulate an image in a spatially local manner. Such algorithms
are potentially more powerful, but run the risk of producing image artefacts and/or disrupting the natural feel
of the image. A third way taken by Ferradans et al.? is to first apply a global, point-wise non-linearity and then
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apply a second, local stage designed to enhance contrast. We continue with this approach but base the first stage
upon new psychophysical research of Kane and Bertalmio'® described in section 2. The second stage explained
in section 3 adopts the neural model of Bertalmio,'! which is an extension of the contrast and color enhancement
method of Bertalmio et al.'? used in Ferradans et al.,? with larger capabilities in terms of redundancy reduction
and the ability to reproduce assimilation phenomena. Both Bertalmio'! and Bertalmio et al.'? are closely related
to the Retinex theory!'? of color vision and to the perceptually inspired color correction approach of Rizzi et al.!4

2. PSYCHOPHYSICAL MODEL FOR VISUAL PERCEPTION

In a companion paper Kane and Bertalmio!® investigated image quality scores for images presented with different
system gammas, where system gamma is the end-to-end pixel-wise exponent that describes the relationship
between the relative luminance values in the original scene and the displayed image (i.e. the product of the
decoding gamma of the monitor and a variable encoding gamma set by the experimenter). The stimuli were
images from the high dynamic range survey by Mark Fairchild'® and spanned a broad range of DRs from two
to seven orders of magnitude. The images were displayed with a system gamma of between 1/16 to 4 using a
logarithmic sampling. Subjects were asked to rate the perceived quality of each image using a sliding scale. The
major finding was that image quality scores could be predicted by the degree of flatness in the perceived lightness
distribution, where lightness was modelled a gamma function of on-screen luminance. Accordingly, the optimal
system gamma is the one which produces the flattest lightness histogram. Such an approach is dependant upon
using an accurate model of lightness perception. In this paper we shall model lightness by passing the luminance
image through a point wise gamma-exponent with a value of 0.4.'6 This is a simplification based on the average
gamma-exponent inferred in Kane and Bertalmio.'® Developing the model of lightness perception is an ongoing
area of research. We note the theoretical and practical differences between this approach to estimating the
optimal gamma and others in section 2.2.

The work of Kane and Bertalmio!® can estimate the preferred system gamma for an image of any DR,

however, the application of system gamma alone is not sufficient to produce good looking images. In this regard
it is important to note two other observations. First, is that the median luminance of an image is strongly and
inversely correlated with the DR. Thus as the DR increases, images become increasingly low key. In turn, the
system gamma needed to flatten the lightness histogram becomes closer to zero (more compressive). Second, the
higher the DR, the lower the image quality score when using the optimal system gamma. Images with a high
DR, tend to appear flat and low contrast after the application of the estimated system gamma. Accordingly, a
second stage is needed to further enhance the contrast of the image, particularly for images with a high DR.

2.1 Model details

Decoding gamma (7g4e.) is the response function of a monitor. Encoding gamma (7en.) is the response function
of an image format. System gamma (7,ys) is the effective gamma after the image has been passed through both
the encoding and decoding gammas (Ysys = Yenc X Vdec)-

The displayed image I is presented with a given system gamma ~,,,, where Iy is the original linear radiance
map normalised to between 0 and 1.
I=1)" (1)

The perceived lightness of the image L* is modelled as a gamma function, of value 7,4, on screen luminance.
This value is fixed to 0.4 in this study.
L* = [rsv (2)

Note, eq. 1 and eq. 2 can mathematically be combined into one stage, but conceptually we prefer to keep
perceptual and physical processes separate, particularly given that a more complex model of lightness perception
may be needed in the future.

For each value of vs,s we compute the flatness of the lightness distribution using

F=1- % 3 (H(L*)i - i)g (3)

i=1



where F is the flatness, H(L*) is the cumulative histogram of image L* and N is the number of bins for the
histogram of L* (we fix that to be 2'6). Finally, we search for the value of v, that optimizes F and it is the
‘optimal’ system gamma.

2.2 Comparison to other work

A recent thesis by Singnoo!” has investigated preferred system gamma in human subjects and proposed that the
optimal system was related to the system gamma that maximised entropy in the image. As noted in the thesis,
the system gamma that maximised the entropy of an image is highly correlated with the system gamma that
maximises the flatness of the intensity distribution. Thus the model of Singnoo is equivalent to our model using
a Ypsy of one (i.e. assuming that perception was linear). This model was tested against the preference of human
subjects. The model was not an absolute predictor of preferred system gamma and it was argued that a linear
corrective factor was required. Thus theoretically image entropy is not a correct model of human preference for
system gamma. However, in pratical terms if a precise corrective factor can be estimated then the model can still
be expected to generate pleasing images. However, we note that the two models produce different predictions;
in over 70% of the images tested, the estimated gamma was different by more than 20%.

3. NEURAL MODEL FOR VISUAL PERCEPTION

The first stage of our TMO applies an ‘optimal’ system gamma. However, as noted in the previous sections,
this approach alone is not always sufficient to produce a high quality image. In particular, those images with
a high DR tend to have a flat, low contrast appearance. Also a global approach may not be able to model
the spatially variant operation in the human visual system. Ferradans et al.® showed that by using Bertalmio
et al.!?2 color enhancement model as a second stage, local contrast and color constancy of the human visual
system can be approximated. The following energy functional proposed by Bertalmio et al.'? is an improvement
from the energy functional proposed by Sapiro and Caselles'® (that performs histogram equalization when it is
minimized) by incorporating basic visual perception principles, such as locality, color contrast and white patch:

B() = &3 Uw) — e~y Y wle g)I) ~ )ldedy + 5 (1) ~ hf@)de ()
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where a, 8,7 > 0, I is a color channel (R,G,orB) of an image which is in the range [0, 1] and x,y are
pixel positions. The first term measures the average difference of the image pixels with the mid-value of 1/2.
Ferradans et al.” use the average value of the original image instead of 1/2 in the original model. The second
term calculates the local contrast, where w is a Gaussian kernel with standard deviation o and I(x) and I(y)
are intensity values at pixel position x and y. The last term measures the average departure of the new image
from the original image (Iy). Now, by minimizing F(I) one could maximize the contrast without departing too
much from the original image and mid-value, and this can be achieved by a gradient descent approach. And the
gradient descent equation for the functional is

1

I(x) = —a(I(x) = 5) +7 ) w(z,y)sgn(I(x) — I(y)dy — BI(x) — To(x)). (5)

Bertalmio et al.'? and Bertalmio and Cowan'® showed that the Wilson-Cowan equations,? 2! that describes
the temporal evolution of the neural activity in the V'1 region of the visual cortex, could be a gradient descent of
certain energy and eq. 5 is closely related to it. Also Bertalmio'! showed that Bertalmio et al.'? always produces
local contrast enhancement, not assimilation, and proposed a modification that incorporates all the features of
Bertalmio et al.'? along with lightness induction. The modified gradient descent function is

Ii(w) = —a(I(x) = m(x)) + 71+ (0())%) Y_ w(x,y)sgn(I(x) = I(y))dy - B(I(z) — Io(x)). (6)
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Figure 1. Illustration of lightness assimilation and contrast. Top row, from left to right: input image, result of applying®?
to input image, result of applying,'’ result of applying our modification. Bottom row, shows the profile of line from the
corresponding images.

where the mid-value of the first term is no longer global but the local mean of the original image computed
with a Gaussian kernel: m(z) = (G x Ip)(x) and a constant weight for the second term is replaced by a spatially
and temporally varying one, based on the local standard deviation ¢, while ¢ is a constant.

The image illustrated in the upper row left of fig.1 has equally spaced gray bars either superimposed on a
dark or a light background. The observer will perceive the bars as darker on a dark background and vice versa.
However, in the original formulation of the Bertalmio et al.,'? lightness contrast is predicted where the bars are
perceived as lighter on a dark background and vice-vera (second column). The adaptation of Bertalmio'! and
the model presented in this paper both correctly predict lightness assimilation (third and fourth column).

4. IMPLEMENTATION

In this section we detail a step by step implementation of our method. Initially the red (R), green (G) and blue
(B) channels of the HDR image are read and normalized by dividing by the maximum value, so the intensities
are in the range [0 1]. Then we compute the luminance channel (L) using the formula L = 0.2126 x R + 0.7152 *
G +0.0722 x B.

Second we find the value that clips the 1% of the pixels with highest intensity in L channel and divide
L, R,G, B channels by that value and clip the value above one. In Fig.2, we show the importance of clipping to
get an image with more contrast. The left image is obtained by applying our algorithm without clipping. This
image looks darker and is of low contrast. On the other hand the right image obtained by first applying clipping
has more contrast and more details of the scene are visible.

Figure 2. Illustration of the importance of clipping. Left image is the final output of our TMO without clipping, and right
image is the final output of our TMO with clipping.
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Figure 3. Combined kernel K.

In the first stage of our tone mapping algorithm, we estimate the optimal system gamma (7,ys). This com-
putation is applied to the L channel and the pseudocode is shown below:

Vsys = 0.4; TYpsy = 0.4; Fo1a = 0; Ydee = 2.2;
while dif f > 0 and 7,y < 2 do
Vsys = Vsys +0.1
L* = (L)Ypsv*Vsvs (eq. 2 and eq. 1)
F=1-

Nﬁ (H@)—i)"  (ea®)

dif f =F — Foa
Fog=r
end while

,y __ Jsys
enc Ydec

Then we apply the gamma transform with the encoding gamma (7en.) to each color channel separately. This
image is then passed to the second stage.

If we use a linear combination of two Gaussian kernels to compute the local mean, we can drop the term
(14 0¢(x)) from eq. 6 but still produce assimilation, as fig. 1 (right) shows. Accordingly the modified gradient
descent function is:

Li(z) = —a(I(x) = p(x)) + 7 Y wlz,y)sgn(I(z) — 1(y)dy — B(I(x) — Io(x)). (7)

Y

where I is one of the color channels of the output image from first stage, «, 8,7 = 1, w is a normalized 2D
Gaussian kernel of standard deviation o,,. We fix o, as 200. We compute the local mean (p(x)) by convolving
the image with a kernel K (fig.3): K = nlxG1+ n2x* G2, where nl = 1,n2 = 0.5, the standard deviation of G1
is 10 and that of G2 is 250.

The image that minimizes the energy is obtained by iterating:

") = I"(x) + At(I (2)) (8)



Figure 4. Comparison between using global mean and local mean in eq. 7. Left, final output using global mean and right,
final output using local mean.

where At = 0.15 and the iteration stops when the difference between the current and the previous result is
less that 0.005. Fig. 4 compares the steady state results of the eq. 8 when using a global mean versus a local
mean value p(x). We can see that the left-hand image obtained by global mean has less contrast, especially in
the bright regions, when compared with that of the right-hand image obtained by the local mean.

5. EXPERIMENTS AND RESULTS

In order to evaluate the performance of our TMO, we use two quantitative metrics: Dynamic Range Independent
Quality Metric (DRIM)?? and Tone Mapping Quality Index (TMQI).?3

The metric DRIM takes as input the luminance channel of the reference image (eg. HDR image) and the
test image ( eg. LDR tone mapped counterpart). The metric then estimates the contrast change between the
two images on a pixel wise basis. Three types of distortions are estimated: loss of visible contrast (LVC) where
contrast is visible in the HDR image but not in the LDR image; amplification of invisible contrast (AIC) where
contrast is visible in the LDR image but not in the original scene, and finally reversal of visible contrast (INV),
where contrast is visible in both images but with opposite polarities. The output of the metric is visualised using
a color coded distortion map. Green represents LVC, blue indicates AIC, red indicates INV and the saturation
of each color indicates the magnitude of distortion. The global score (GS) is obtained by the formula

1
GS =+ > VLVC2 + AIC? + INV?2 (9)

The TMQI metric?? is a modification of the Structural Similarity Index Measure (SSIM)?* metric which is
normally used to estimate the perceived difference between two images of the same DR, by examining the change
in a series of wavelet coefficients. In addition the metric includes a measure of the perceived naturalness of the
tone-mapped image. The first term of TMQ]I, structural fidelity (S), is obtained by modifying the luminance and
contrast comparison terms of the SSIM in such a way that the difference in the signal strength between the HDR
and the LDR images is not penalized if both are significant or insignificant but penalized if one is significant and
the other is insignificant. The second term, statistical naturalness (N), is modelled according to the statistics
computed on natural images. They found that the histogram of the mean and standard deviation of natural
images can be fitted using a Gaussian and Beta probability density function respectively. And the statistical
naturalness can be the product of the two density functions. The overall quality (Q) is obtained by a weighted
average of S and N. The measures are between [0,1] and higher values mean better results.



Figure 5. Comparison between the output of first and second stage. From left to right, output of the first stage, output
of the second stage, distortion map of the first image and the distortion map of the second image.

We use the metric DRIM to estimate the performance of the first and second stages of the model and illustrate
this in Fig. 5. The first image is the output of the first stage and second image is the output of the second stage
of our algorithm. We can see considerable improvement of contrast in the output of the second stage. The third
image shows the distortion map of the first stage and the fourth image shows the distortion map of the second
stage. Our visual evaluation is backed by the distortion maps. The LVC (green color) is considerably reduced
in the distortion map of the second stage. For a numerical comparison, the reading for the first stage is GS =
0.589 and for the second stage is GS = 0.554. The results confirm that the second stage produces an output
with less error than the first stage.
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To estimate how our model fairs compared to contemporary approaches we apply the DRIM?? and TMQ
metrics to the folowing TMOs: Mantiuk et al.,® Drago et al.,” Reinhard et al.,* Ferradans et al.” and Singnoo.
We use the tone mapping functions provided by pfstools?® to generate tone mapped LDR images from HDR
images, except for Ferradans et al.® for which the author has supplied the code. We also use the default
parameters for all tone mapping operators. In Fig. 6, the HDR images are ‘BloomingGorse2’ and ‘CemeteryTreel’
from the Fairchild dataset.!> We can see that, for both examples our algorithm produces less contrast distortions
that the other methods, except for Mantiuk et al.® for the second example in which our algorithm reduces INV
(red color) but has higher LVC (green color) in the dark region. We refer to table. 1 for the numerical global
error. In Fig. 7 we show more results of our tone mapping approach.

In table. 2, we show the global error with DRIM?? and TMQI.??> We present an average error over 41 images

Figure 6. Comparision of TMO. TM results (rows 1 and 3) and distortion maps (rows 2 and 4) for these TMOs from left
to right: proposed method, Mantiuk et al.,> Drago et al., 7 Reinhard et al.* and Ferradans et al o



Table 1. Quantitative evaluation

23

Images T™MO DRIM?? (GS) ’(EMQI g N
proposed stgl 0.563 0.964 | 0.942 | 0.846
final output 0.554 0.924 | 0.936 | 0.601
Mantiuk et al.® 0.554 0.9 0.925 | 0477

BloomingGorse2 | Ferradans et al.” | 0.584 0.91 0.91 0.561
Drago et al.” 0.611 0.924 | 0.935 | 0.602
Reinhard et al.* | 0.581 0.948 | 0.907 | 0.801
Singnoo'” 0.760 0.944 | 0.980 | 0.656
proposed stgl 0.684 0.941 | 0.954 | 0.68
final output 0.639 0.947 | 0.948 | 0.731
Mantiuk et al.® 0.636 0.924 | 0.949 | 0.585

CemeteryTreel | Ferradans et al.” | 0.702 0.928 | 0.929 | 0.637
Drago et al.” 0.724 0.83 0.928 | 0.131
Reinhard et al.* | 0.758 0.922 | 0.928 | 0.605
Singnoo'” 0.665 0.969 | 0.952 | 0.87

Table 2. Quantitative evaluation of images in Fairchild dataset!®

73
Images TMO DRIM?? (GS) gMQI S N
proposed stgl 0.517 0.872 | 0.902 | 0.416
final output 0.483 0.894 | 0.916 | 0.505
Average of Mantiuk et al.® | 0.462 0.9 0.917 | 0.514
41 images for DRIM | Ferradans et al.” | 0.495 0.891 | 0.894 | 0.503
105 images for TMQI | Drago et al.” 0.542 0.869 | 0.871 | 0.421
Reinhard et al.* | 0.513 0.872 | 0.876 | 0.44
Singnoo™” 0.538 0.893 | 0.915 | 0.482

(in the case of DRIM) and 105 images (in the case of TMQI) from the Fairchild dataset.!® According to to these
metrics our algorithm compares well with respect to the state of the art.

Figure 7. Results of our method for several HDR images obtained from the Fairchild database®®



6. CONCLUSION

We proposed a two stage tone mapping operator based on psychophysical and neural models of visual perception.
The first stage performs range compression by a gamma transform, where the gamma curve is the one that
equalizes the luminance histogram the best. The second stage performs local contrast enhancement and color
induction using neural activity models for the visual cortex.

We compared our methold to other contemporary tone-mapping operators using two computation metrics
that estimate either the perceived contrast differences between high and low DR images (DRIM) or produce
estimates of the perceived image quality (TMQI). The metrics indicate that our method compares well with the
state of the art.The advantage of using a computational assessment is that many tone-mapping operators and
base images can be tested in a short space of time, however we acknowledge that this analysis relies heavily upon
the reliability of the metrics. Indeed, if the metrics are to be considered as ground truth, then the aims and
motivations of any tone-mapping operator should ultimately be to optimise the metric outputs (e.g. Cyriac et
al.?0). In the opinion of the authors, our approach produces realistic images with no noticeable color artefacts
for all images tested.

The novelty of the results stems from the use of a perceptually derived model for estimating the preferred
system gamma. This is an area of ongoing research and there are two research directions that could improve the
model. The first is to develop the model of lightness perception so that it adapts precisely to the end viewing
conditions and to the image in question. The second is to try different non-linearities. The gamma function
is chosen because of its simplicity, but it is not optimised for the statistics of natural scenes. For instance the
Naka-Rushton equation is a better approximation of the cumulative histogram of natural scenes and will thus
achieve greater histogram equalisation.
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