
To appear in The 38th Annual AAAI Conference on Artificial Intelligence (AAAI-24)

NILUT: Conditional Neural Implicit 3D Lookup Tables for Image Enhancement

Marcos V. Conde1, Javier Vazquez-Corral2,3, Michael S. Brown4, Radu Timofte1
1 Computer Vision Lab, CAIDAS, University of Würzburg 2 Computer Vision Center (CVC)
3 Department of Computer Science, Universitat Autònoma de Barcelona 4 York University

...
...

...
...

...
...

NILUT

StyleInput I Style= 1 “Night” Style= 2 “Cyberpunk” Blend Styles 1&2

Figure 1: NILUTs encode multiple 3D LUTs in a single representation with the ability to blend between “styles” implicitely.

Abstract

3D lookup tables (3D LUTs) are a key component for im-
age enhancement. Modern image signal processors (ISPs)
have dedicated support for these as part of the camera ren-
dering pipeline. Cameras typically provide multiple op-
tions for picture styles, where each style is usually obtained
by applying a unique handcrafted 3D LUT. Current ap-
proaches for learning and applying 3D LUTs are notably
fast, yet not so memory-efficient, as storing multiple 3D
LUTs is required. For this reason and other implementa-
tion limitations, their use on mobile devices is less popular.

In this work, we propose a Neural Implicit LUT (NI-
LUT), an implicitly defined continuous 3D color transfor-
mation parameterized by a neural network. We show that
NILUTs are capable of accurately emulating real 3D LUTs.
Moreover, a NILUT can be extended to incorporate mul-
tiple styles into a single network with the ability to blend
styles implicitly. Our novel approach is memory-efficient,
controllable and can complement previous methods, includ-
ing learned ISPs. Code, models and dataset available at:
https://github.com/mv-lab/nilut.

1. Introduction
Image signal processors (ISP) are hardware units used

in cameras to process the RAW sensor images to the final
output image [18, 24, 39]. The ISP hardware applies a se-
ries of processing steps to render the RAW image to its final
photo-finished output. 3D lookup tables (3D LUTs) are one
of the core components used in conventional ISPs. Specif-
ically, a 3D LUT is a global color operator that maps an
RGB color to a new RGB color. 3D LUTs are commonly
used to model a desired stylistic look as shown in Fig. 1.

Most cameras can render the same image to several differ-
ent pictures, where each picture style has its own associated
3D LUT to enhance the color and tone [13, 25, 50, 53].

Modern cameras use conventional ISPs [11, 13, 24] and
apply further photo-finishing deep-learning models [23,44].
These usually run on dedicated processors e.g. neural pro-
cessing units (NPUs), with important limitations such as
memory allocation and allowed operations [21]. In addi-
tion, there is already an active trend to replace many con-
ventional ISP components with deep learning-based algo-
rithms, e.g., image denoising [8], color constancy [19],
super-resolution [9,22], and even the entire ISP [28,31,32].

In particular, methods for image enhancement via color
and tone manipulation are often based on 3D LUTs [48,50]
due to their runtime efficiency. However, many of these
methods are not suitable for mobile devices due to their
memory limitations (i.e. storing multiple 3D LUTs would
be too memory exhaustive) and required operations.

Contribution We propose NILUT, a novel application of
implicit neural representations (INRs) [41] for color ma-
nipulation. Our NILUT is an implicitly defined, continu-
ous 3D color transformation parameterized by a neural net-
work. NILUTs can accurately mimic existing professional
3D LUTs, as shown in Fig. 2. Moreover, NILUTs can be
extended to encode multiple styles into a single network.
During inference, the NILUT can be conditioned on a par-
ticular picture style, and even blend between multiple styles
implicitly. This novel multi-style formulation allows con-
trollable image enhancement and customization. We be-
lieve NILUTs can complement previous methods for image
enhancement [46,48,50,53], including learned ISPs [20,23]
designed for smartphones. As part of this effort, we provide
a dataset of curated 3D LUTs and images for evaluation.

1

ar
X

iv
:2

30
6.

11
92

0v
3 

 [
cs

.C
V

] 
 2

4 
D

ec
 2

02
3

https://github.com/mv-lab/nilut


...
...

...
...

...
...

Input I Input I′
NILUT

3D LUT

Figure 2: Top: shows a conventional 3D lookup table able
to enhance the color and tone of the image. Bottom: shows
the same functionality based on the proposed NILUT.

2. Related Work
2.1. 3D LUTs for Color Manipulation

3D LUTs are a mechanism to approximate a nonlinear
3D color transform by sparsely sampling the transformation
by a discrete 3D lattice [24, 29, 50]. The model is defined
as a mapping ϕ, usually in the RGB color space, where an
input color I = [r, g, b] is mapped into I′ = [r′, g′, b′]:

ϕ : R3 7→ R3 ϕ(I) = I′. (1)

3D LUTs appear at different stages of the image signal
processor pipeline, as detailed in [24, 25]. 3D LUTs are of-
ten manually created by camera engineers and professional
photographers. Methods such as lattice regression [14, 29]
parameterize the 3D LUT’s lattice from the sparse samples
using various regularizations.

More recently, deep learning techniques have been em-
ployed for estimating 3D LUTs and learning interpolation
and sampling strategies within the LUT with the goal of
color image enhancement [30,46,49]. For example, Zeng et
al. [50] proposed a method that learned the parameters of
three 3D LUTs and an additional per-image adaption to
blend between the LUTs. Similarly, Wang et al. [46] pro-
posed a similar idea to learn the parameters of 3D LUTs, but
included a spatial blending over the image, effectively im-
plementing a spatially varying 3D LUT. Yang et al. AdaInt
[48] focused on improving the sampling within the 3D
LUTs (based on [50]). They proposed a learned method
to improve the classical trilinear interpolation between uni-
form sampling points in the LUT [29]. Also, Yang et
al. [49] proposed to learn separated component-correlated
sub-transforms as 1D and 3D LUTs.

The aforementioned methods focus on conventional 3D
LUTs and their interpolation mechanisms. In contrast, our
NILUT is interested in providing the functionality of the
3D LUTs, but as a neural network to be more compatible
with NPU-based hardware. In addition, we are interested in
encoding multiple picture styles within the same network.

2.2. ISPs and Image Enhancement

In recent years, most low-level computer vision tasks
have witnessed promising results from deep learning meth-
ods. For example, significant advances in image de-
noising [8, 51], image deblurring [38], image super-
resolution [9, 27], and image enhancement [12, 16, 17, 33,
36, 45, 47, 52, 53] amongst many other tasks. Most of these
tasks are crucial stages in modern smartphone ISPs.

Moreover, recent end-to-end learned ISPs [23,28,31,32]
have also obtained promising results. Due to this current
deep learning trend, smartphone manufacturers are incor-
porating special neural processing units (NPUs) [2–7, 21].

This said, the previously introduced methods are de-
signed to run on consumer GPUs (e.g. NVIDIA V100), and
therefore integrating such powerful tools into a smartphone
is extremely challenging, and sometimes impossible due to
the memory and computational limitations [21].

Our NILUTs represent a new plug-and-play module for
modern deep learning-based ISPs and image enhancement
pipelines such as Ignatov et al. real-time image super-
resolution [22] and end-to-end learned ISPs [20] tested in
real commercial smartphones NPUs.

2.3. Implicit Neural Representations

In recent years, implicit neural representations
(INRs) [15, 37, 41] have become increasingly popular
in image processing as a novel way to parameterize an
image. Also known as coordinate-based networks, these
approaches use multilayer perceptrons (MLPs) to overfit
to the image. Multiple works have demonstrated the
potential of MLPs as continuous, memory-efficient implicit
representations for images [41, 42]; we find especially
inspiring SIREN [41] and Fourier Feature Networks [43].
This technique was also successfully applied to model
shapes [15, 34] and 3D scenes [35, 37].

Conventional signal representations are usually discrete
e.g., an image is a discrete grid of pixels (subspace of R2)
with output values bounded in an R3 RGB space. In con-
trast, INRs parameterize a signal as a continuous function
that maps the source domain S of the signal (i.e., a coor-
dinate) to its corresponding value in the target T (i.e., the
corresponding RGB intensity value). This function is ap-
proximated using a neural network, and therefore it is not
analytically tractable. This can be formulated as:

Φ : R2 7→ R3 x → Φ(x) = [r, g, b], (2)

where Φ is the learned INR function, the domains S ∈ R2

and T ∈ R3, the input coordinates x, and the output RGB
value [r, g, b]. Note that the behavior of this function is
similar to a lookup table—see (1)— yet being continuous,
differentiable, and learnable. Our new application of INRs
consists of learning a mapping between two color represen-
tations.



3. Neural Implicit LUT
As discussed in the prior section, the most common INRs

in the literature [41, 43] are coordinate-based representa-
tions of image signals, implemented using MLPs. In this
work, our goal is to learn a 3D transformation in the RGB
color space, therefore we map R3 coordinates (i.e. color val-
ues I) from a source S to a target T , being both 3D domains.

Specifically, we want a continuous function Φ with the
following properties:

Φ : R3 7→ R3 Φ(I) ∈ [0, 1]3, (3)
Φ(I) ≈ ϕ(I), (4)
∇Φ ≈ ∇ϕ. (5)

We represent the RGB space as a set X = {xi} of color
pixels xi = (ri, gi, bi). This set contains ≈ 16 million el-
ements if we consider the complete RGB space (i.e. 2563).
To learn our continual representations Φ we minimize:

L =
∑
i

∥Φ(xi)− ϕ(xi)∥1, (6)

where ϕ is the real 3D LUT -see Eq. 1-.
This function Φ is an implicit neural representation of a

3D lookup table ϕ and can be formulated as:

Φ(x) = Wn(ςn−1 ◦ ςn−2 ◦ . . . ◦ ς0)(x) + bn

ςi(xi) = α (Wixi + bi) ,
(7)

where ςi are the layers of the network (considering their
corresponding weight matrix W and bias b), and α is a
nonlinear activation. We study three different networks: (i)
simple ReLU-MLPs or Tanh-MLPs [41], (ii) SIREN [41]
and (iii) Residual MLPs (referred as MLP-Res).

We note here that SIREN [41] has some drawbacks in
terms of its implementation. First, it can not use INRs
speed-up techniques, such as the one in [37], and second,
their custom activations are still not supported for mobile
devices accelerator hardware.

Another alternative to SIREN would be a residual-based
MLP (MLP-Res). This approach assumes the 3D LUT does
not make drastic color changes (e.g., red becoming blue),
but instead performs color manipulation via reasonable dis-
placements (residual) between input and output RGB val-
ues. Our visualizations of 3D LUTs in Fig. 3 help to re-
veal that this is often the case. This approach also serves
to help regularize the MLP in regions with no changes (i.e.,
the residual is 0 over the three changes). Our ablations in
Section 4 also reveal this is a good strategy.

Conditional Neural LUT We can further improve the
proposed representation to model more complex relation-
ships in the image color domain:

Ψ : R3+m 7→ R3 Ψ(z) = I′, (8)

where z = [I, c] is the concatenation of the input RGB in-
tensity I ∈ R3, and a condition vector c ∈ Rm with m pos-
sible styles or LUTs using one-hot class encoding. There-
fore this continual function Ψ maps an input intensity I into
I′ under the condition c, representing a conditional neural
implicit LUT, a more general and powerful representation
than the previously introduced NILUT (Φ). We illustrate
this in Fig. 3, where we show the codification of the style
as a condition vector using one-hot encoding. The deriva-
tion of our CNILUT also allows us to blend among different
styles by just modifying the values of the condition vector.
Details of this are provided in Section 4.1.

3.1. Discussion

We end this section by discussing some benefits and dif-
ferences between NILUTs over conventional 3D LUTs.

Firstly, previous approaches for learning 3D LUTs [14,
48,50] are notably fast and faithful, allowing real-time pro-
cessing using regular GPUs (e.g. 24Gb memory). We un-
derstand that a neural network (e.g. NILUT) is limited and
cannot surpass the efficiency of a lookup operation. How-
ever, in the mobile devices scenario, 3D LUTs have two
important limitations: (i) allocating in memory multiple 3D
LUTs (usually 33-dim, thus 107K FP parameters [50]) is
not possible due to the hard memory limitations found in
mobile devices chips e.g. NPUs [21]. Note that dedicated
processors such as the ISP usually have their own memory
and typically only compact models can run on these [20,22].
(ii) many operations, including Zeng et al. trilinear interpo-
lation on CUDA [50] are not supported by PyTorch Mobile
or TFLite, the most common frameworks for developing ef-
ficient mobile models. We believe these are the reasons why
there are very few works about image enhancement on mo-
bile devices using 3D LUTs. Thus, we aim to complement
previous approaches and offer a memory-efficient alterna-
tive for mobile devices.

Secondly, NILUTs offer other benefits such as being nat-
urally differentiable, allowing end-to-end learning, and are
mobile-ready allowing to complement deep learning-based
image processing pipelines as a plug-and-play module, in
mobile devices. Finally, NILUTs, as a novel representa-
tion, are conditional, allowing a single compact neural net-
work to deal with multiple styles or LUTS that are presented
in the imaging process. This clearly contrasts with current
LUTS, in which a different process should be run for each
specific one. This is key to being memory-efficient as one
NILUT can mimic the transformation of five real 3D LUTs.
Also, this property allows us to blend among the differ-
ent styles at inference time in contrast with current LUTs
where each blending is individually computed either at the
3D LUT or at the image level (e.g. as in [50]).



...
...

...
...

...
...

...

. . .

Input I

CNILUT

c condition vector
CNILUT 1
c = [1, 0, 0]

CNILUT 2
c = [0, 1, 0]

Blending 1&2
c = [0.6, 0.4, 0]

Input I 3D LUT 1 3D LUT 2 3D LUT 3 3D LUT m

Figure 3: Top: A conventional 3D LUT framework. Each 3D LUT is stored and processed individually. Bottom: The new
framework introduced by CNILUTs. We use as input both the image and a condition vector (one-hot encoding of the style),
allowing for i) selection of multiple styles with a single network, and ii) blending different 3D LUTs styles by modifying the
input condition vector. This happens implicitly without additional computational cost.

4. Experiments
Learning a complete 3D LUT transformation of the 8-

bit RGB space requires 2563 = 16.78 million input (and
output) colors. According to Eq. (6), we represent these
16M colors of the RGB space as a set X = {xi} of size
16M × 3. This set is equivalent to an image of dimen-
sion 4096 × 4096 × 3 that we call M. We will denote this
image as the RGB map, illustrated in Fig. 4. We then pro-
cess image M using professional image editing software
(Adobe Photoshop) and real 3D LUTs designed by photog-
raphers. These processed images are reshaped back to di-
mension 16M × 3, and correspond to ϕ(xi) on Eq. (6), i.e.
our ground-truth for the minimization.

The coordinate-based MLP Φ, as it is the standard prac-
tice with INRs [41], is trained to “overfit” the mapping be-
tween its result to the input colors (Φ(xi)) and the output
of the real LUT ϕ(xi), as previously introduced in Section
2.3. We provide visualizations of this training for a subset
of the colors in M in the supplementary material.

Note that using this setup we do not require natural im-
ages to learn real 3D LUTs, just the corresponding RGB
maps (Halds). This is indeed the way professional photog-
raphers create 3D LUTs [1].

Evaluation We consider two different metrics for our
work. We report PSNR, and CIELAB ∆E error. We choose
these two measures because i) PSNR is a standard fidelity

Figure 4: From left to right, original RGB map, output of
3D LUT “Cyberpunk”, output of 3D LUT style “Nightcol-
ors”. We can appreciate the color transformation clearly. In
graphics, this is referred to as a Hald image, a graphical
representation of 3D LUT in the form of a color table that
contains all of the color gradations of 3D LUT [1].

metric in the literature and ii) ∆E is a perceptual color dif-
ference metric that measures differences between two col-
ors [40], and therefore well suited for our problem. Consid-
ering that we fit our NILUTs using RGB maps as mentioned
before, we evaluate the quality of our NILUT representation
in two different ways: (i) RGB mapping quality (Fig. 4), (ii)
using natural unseen images from MIT5K [10].



Method N L PSNRrgb ↑ ∆Ergb ↓ PSNR5k ↑ ∆E5k ↓
SIREN [41] 128 2 44.43 1.04 41.17 1.63
SIREN [41] 64 2 45.37 0.96 40.35 1.82
MLP-Res 128 2 45.34 0.97 42.04 1.65
MLP-Res 64 2 43.84 1.11 40.34 1.93

MLP 128 2 43.18 1.19 39.70 2.20
MLP 64 2 41.41 1.41 38.34 2.36

Table 1: Evaluation of different NILUT architectures on
both the RGB map image and on the MIT5K dataset [10].
We refer to the number of neurons as (N), number of lay-
ers as (L). Compact SIREN [41] and MLP-Res architectures
can model complex 3D LUTs and approximate their trans-
formations. Best results in bold. Second best underscored.

Our dataset consists on a set of 5 professional 3D LUTs.
We report the average metrics over the five.

I) We compare the fidelity between the NILUT and real
3D LUT RGB maps. More in detail, we evaluate the dif-
ferences between the NILUT-generated map Φ(M) and the
real 3D LUT output map ϕ(M) -see Eq.(6)-. These results
are referred as PSNRrgb and ∆Ergb in Table 1

II) We randomly selected 100 RAW images from the
Adobe MIT5K dataset [10], captured using diverse DSLR
cameras. We then processed the images using Adobe Photo-
shop and the same set of 3D LUTs discussed before. Once a
NILUT is fitted using the corresponding RGB map, we ap-
ply it to this set of images and measure the fidelity between
the real 3D LUT and NILUT processed images. These re-
sults are referred as PSNR5k and ∆E5k in Table 1.

Table 1 presents our results for different configurations
of MLPs -a basic MLP, SIREN, and a Residual MLP-, under
two different numbers of neurons (N) and layers (L). Note
that differences in ∆E smaller than 2 are indistinguishable
by human observers [40]. Also, results with more than 40
dB PSNR are considered of high quality. Attending to Ta-
ble 1 results, we can affirm that NILUTs can mimic almost
perfectly the RGB transformation of real 3D LUTs on nat-
ural images from photographers [10].

We also present in Fig. 5 results for the case of MLP-Res
N = 128 and L = 2. We show from left to right, the input
image, the ground-truth image processed by real a 3D LUT,
and our result. We also display a miniature error map for
each of our results. The error map is scaled between 0 and
5 ∆E Units. We provide more results in the supplementary
material.

Ablation Studies We studied the results for a larger con-
figuration of MLPs under the first evaluation scenario. Re-
sults are presented in Table 2. We can see how for all the
cases studied we are able to obtain values that are higher
than 40 dB in PSNR and smaller than 1.5 on ∆E, i.e. our
results have high quality in terms of PSNR and are, on av-
erage, indistinguishable from the ground-truth for a human

Input Real 3D LUT Ours NILUT

Figure 5: Results for two different styles (1-2 rows, and 3-4
rows). We can see how the NILUTs are able to reproduce
the different styles from professional 3D LUTs. Samples
from MIT5K [10]. Note that the NILUT never saw these
(or any) real images. Best in electronic version.

Figure 6: Convergence study. Required number of training
steps for each architecture (N neurons, L layers) to achieve
over 40dB PSNR at RGB mapping quality -see Fig. 4-.

observer. Also, for all the studied architectures we looked
at their convergence speed. In Fig. 6 we show for each of
the architectures the number of iterations that they required
to obtain a result of 40 dB. We can clearly see that the ba-
sic MLP needs a larger number of iterations in comparison
to SIREN [41] and the Residual-MLP. For the last one, our
main architecture MLP-Res, the training is more stable than
for SIREN [41], and we can achieve almost perfect mapping
in 4 minutes without using special INR acceleration [37].



Input I CNILUT c=1 CNILUT c=2 CNILUT c=3

Figure 7: Results for our conditional NILUTs (CNILUTs). A single CNILUT is able to represent three different styles in a
single model. All the images in this figure have less than 3 ∆E error with respect to the real LUT. Best viewed in color.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Training steps (x500)

20

25

30

35

40

45

50

PS
NR

Lut 1
Lut 2
Lut 3
Lut 4
Lut 5
Avg

Figure 8: Performance evolution for the CNILUT fitting.
Our single CNILUT can accurately learn five different
styles from five real 3D LUTs. The reported PSNR is cal-
culated over the five respective reference RGB maps (M).
The final average PSNR over the five learned LUTs is 45.34.

4.1. Conditional NILUT

As we introduced in Section 3, our NILUT can be condi-
tioned to different styles (CNILUT), and by doing this, we
can learn implicitly multiple 3D LUT transformations us-
ing a single NILUT. This novel feature would allow reduc-
ing the memory requirements of storing and calling multiple
3D LUTs in a camera pipeline [24]. In our experiments, we
set to three and five the number of 3D LUTs to learn using
this approach. This however denotes a clear trade-off since,
in exchange of this ability, CNILUTS require longer and

Method N L # Par. (K) PSNR ↑ CIELAB ∆E ↓
SIREN [41] 256 2 133.3 41.95 1.45
SIREN [41] 256 3 199.1 43.00 1.33
SIREN [41] 128 2 33.90 44.43 1.04
SIREN [41] 128 3 50.40 42.74 1.43
SIREN [41] 64 2 8.700 45.37 0.96
SIREN [41] 64 3 12.90 43.03 1.35
MLP-Res 256 2 133.3 45.84 1.09
MLP-Res 256 3 199.1 46.19 0.91
MLP-Res 128 2 33.90 45.34 0.97
MLP-Res 128 3 50.40 45.47 0.96
MLP-Res 64 2 8.700 43.84 1.11
MLP-Res 64 3 12.90 43.55 1.14

MLP 256 2 133.3 44.34 1.00
MLP 256 3 199.1 44.49 1.03
MLP 128 2 33.90 43.18 1.19
MLP 128 3 50.40 42.26 1.34
MLP 64 2 8.700 41.41 1.41
MLP 64 3 12.90 40.86 1.49

Table 2: Ablation study of different MLPs. Results are com-
puted as the differences between the NILUT generated map
Φ(M) and the real 3D LUT map ϕ(M). Metrics are the
average over the five 3D LUTs in our dataset.

more complex training, and there is a slight performance
degradation in comparison to learning three/five separated
-and specialized- NILUTs. This said we are able to obtain
consistent values larger than 42 dBs in PSNR and errors
smaller than 1.5 ∆E in the RGB mapping, therefore being



Input CNILUT [1, 0, 0] CNILUT [0, 1, 0] CNILUT [0.5, 0, 0.5]

Input CNILUT [1, 0, 0] CNILUT [0, 0, 1] CNILUT [0.25, 0.5, 0.25]

Figure 9: Example of the blending capabilities of the proposed CNILUT. In particular, the proposed MLP-Res 128x2 is
trained on a set of three 3D LUTs, which achieves an average RGB mapping quality of 43.72dB. We show the three learned
styles (one-hot encoded condition vectors), and two random “blendings” given the specified condition vectors.

almost unnoticeable for human observers. Fig. 8 shows the
evolution of the training of the CNILUT using an MLP-Res
256x2. Note that as before, we train using five RGB maps,
and use as the main metric -in this case- the average avg
over the five representations. As we show, some LUTs are
easier to learn than others, yet we can learn five LUTs with
an average RGB mapping PSNR of 45.34dB, and ∆E 0.85.
In Table 3, we provide an ablation study where we show
the performance of different MLP-Res architectures when
learning 3 and 5 different 3D LUTs. The error is computed
as the average for the different 3D LUTs. Given the large
PSNR and errors smaller than 1.2 ∆E in the RGB mapping,
we can confirm that the difference between the CNILUT
mapping and the corresponding three/five 3D LUTs is al-
most unnoticeable for human observers [40]. The main dif-
ference between CNILUT and NILUT is the training: CNI-
LUT requires longer training to obtain good performance.
We provide this study in the supplementary material.

Multi-Styles Qualitative Results In Fig. 7 we present
some qualitative results of our CNILUT. A single CNILUT
can successfully emulate the behavior of three different 3D
LUTs by imposing the corresponding condition vectors.

Memory Efficiency From previous experiments, we can
conclude that a CNILUT can compress the representation of
five 3D LUTs, without additional computational cost i.e. the
number of operations due to the integration of the condition
vector does not affect the runtime. Considering a standard
33-dimensional 3D LUTs [48, 50] with ≈ 107K parame-
ters, if stored as FP32 would require ≈ 0.43MB. Our NI-
LUT has 8.7K parameters (≈ 0.032MB) and can accurately
reproduce the behavior and properties of such complex 3D

Method Learn x3 Learn x5
PSNR ↑ ∆E ↓ PSNR ↑ ∆E ↓

128x2 43.72 1.07 42.67 1.19
128x3 44.03 0.99 43.71 1.01
256x2 45.37 0.90 45.34 0.85
256x3 47.26 0.74 46.05 0.8

Table 3: Conditional NILUT ablation study. All the re-
ported architectures are MLP-Res. We report results when
learning 3 and 5 different 3D LUTs styles in a single CNI-
LUT. We train our CNILUT for 10000 steps.

LUTs, which implies a compression of 13×. This facilitates
its storage in mobile devices with limited on-chip memory.

Blending Styles The derivation of our CNILUT also al-
lows us to blend among different styles by just modifying
the values of the condition vector. When this vector is a one-
hot encoder we have one of the basis implicit 3D LUTs; but
we can generalize this vector as a set of blending weights.
The multi-style blending occurs as an implicit interpolation
within the neural network itself. This is the same principle
as in SIREN [41] (interpolation of pixels for 2D images)
and NeRF [35]. We analyze the output of blending the test
images with weights [0.33, 0.33, 0.33], and compare with
the linear interpolation of the real processed 2D RGB im-
ages, the PSNR is 40.05dB, indicating the implicit CNILUT
blending is equivalent to explicit images interpolation.

We provide examples of our blending capabilities in
Fig. 9. We believe the blending property itself represents
an interesting future work. We provide more details in the
supplementary material.



Figure 10: NILUT as plug-in module to further enhance
learned ISPs. (Left) RAW image after demosaicing. (Mid-
dle) RGB image produced using a learned ISP designed for
NPU [21, 22]. (Right) Enhanced image using our NILUT.

4.2. Plug-in deep learning based ISPs

We explore the integration of NILUTs into modern
learned ISPs [11, 44]. Our NILUT is a possible plug-and-
play module to further enhance the colors and apply differ-
ent styles. Moreover, it is differentiable, which facilitates
end-to-end ISP optimization. In Fig. 10, we show how to
complement a learned ISP [22] designed to run -and tested-
on smartphones, using our NILUTs to enhance the image
further and manipulate colors.

This is a core step in any traditional ISP [24]. Further
work on training or enhancing ISPs is out of the scope of
this work, as it is a research topic by itself [23, 28, 32, 44].

4.3. Applications

We provide a demo application in Fig. 11. Following
Section 4.2, we deploy a small CNILUT (32x2) on mobile
devices using AI Benchmark [21] and provide the results in
Tab. 4. The model can process 4K images in smartphones
without memory problems at ≈ 10 FPS on regular GPUs
(2020). The CNILUT (3 styles) is just 4KB in comparison
to the 1.2 MB (3× 0.4MB) of the three complete 3D LUTs.

This technique allows controllable color manipulation by
just changing the input condition vectors. By definition,
CNILUT is a pixel-wise transformation, therefore the struc-
ture of the image is perfectly preserved.

4.4. Limitations and Other Methods

Despite the promising results of learning 3D LUTs as
INRs, there are some limitations that we must consider.

Firstly, as we previously discussed in Section 3.1, we
understand that a neural network (e.g. NILUT) is limited
and cannot surpass the efficiency of a lookup operation.

Secondly, by design and mathematical convenience,
other methods for learning 3D LUTs such as Zeng et al. [50]
also achieve “perfect” mapping (i.e. > 50dB). However, de-
spite the great fitting, the application of classical 3D LUTs
on mobile devices is not trivial as discussed in Sec. 3.1.

0 1

0 1

0 1

Style 1

Style 2

Style 3

Select and blend styles

CNILUT Image Enhancement

2778 x 1284

Figure 11: (L) Sample image enhancement application on
mobile devices based on the proposed CNILUT. (R) De-
ployment using [21]. See also Section 4.1 and Figure 9.

Input resolution Mali-G77 MC9 (ms) ↓ Adreno 620 (ms) ↓

1920× 1080 47.9± 1.62 75.0± 3.28
2778× 1284 73.9± 1.62 135.0± 3.63
3840× 2160 121.0± 1.41 286.0± 2.92

Table 4: CNILUT deployment on two mid-level smart-
phone GPUs. We report the average image processing run-
time over 10 runs ± the std. deviation (see Figure 11).

Thirdly, many previous approaches [48–50] did not fo-
cus on learning explicit 3D LUTs, but instead focused on
constructing a mapping between RGB and enhanced RGB
(e.g. “Expert C” in MIT5K [10]), which was not necessar-
ily limited to 3D LUT operations. We aim to complement
these approaches [46, 48–50, 53] with the proposed NILUT
that offers multi-style functionality and is suitable for mod-
ern mobile devices.

5. Concluding remarks

We have introduced NILUTs, a new approach for mod-
eling 3D LUTs as INRs. Our NILUTs are implicitly de-
fined, continuous, 3D color transformations parameterized
by a neural network. They present several advantages: i) are
memory-efficient and can run on mobile devices, therefore,
are easy to integrate into modern deep learning ISPs; ii) can
perform multiple style modifications with a single architec-
ture; and iii) can compute blend between different styles.
The novel multi-style blending formulation allows control-
lable image enhancement and customization. Quantitative
and qualitative results demonstrate the effectiveness of our
newly defined NILUTs for image enhancement. We have
also curated a dataset of 3D LUTs and images for evalua-
tion of color manipulation methods.



Acknowledgements

This work was partially supported by the Alexander von
Humboldt Foundation.

This study was funded in part by the Canada First Re-
search Excellence Fund for the Vision: Science to Applica-
tions (VISTA) program, an NSERC Discovery Grant, and
an Adobe Gift Award.

JVC was supported by Grant PID2021-128178OB-I00
funded by MCIN/AEI/10.13039/501100011033, ERDF ”A
way of making Europe”, the Departament de Recerca i
Universitats from Generalitat de Catalunya with reference
2021SGR01499, and the ”Ayudas para la recualificación
del sistema universitario español” financed by the European
Union-NextGenerationEU.

A. Implementation Details

We develop the models using PyTorch framework and
two NVIDIA RTX 3090. The MLP networks are designed
based on SIREN (and variants) [41]. The models are trained
using fixed learning rate 1e−3 and Adam optimizer [26] un-
til convergence (e.g. 5000 steps, ∼ 4 minutes). Note that
as we show in Fig. 6, convergence depends on the architec-
ture. For the experiments in Tables 1, 2, 3 we do not use
RGB maps of dimension 4096 × 4096 × 3 (i.e. complete
16M values), instead, we use a reduced map of dimension
2048 × 1024 × 3 which contains one of each two possible
values in the R,G, and B channels (i.e. 1283 values), which
requires less memory and allows faster experimentation.

For training the conditional NILUT we use three/five dif-
ferent 3D LUTs, at each step we feed the three/five condi-
tion vector and RGB map into the network and accumu-
late the three/five different loss terms (one for each learned
LUT). We concatenate the map and condition vector to ob-
tain an input with dimension [h×w, 6]/[h×w, 8]. Since we
learn three/five different 3D LUTs using a single CNILUT,
we need to train at least 4000 steps to obtain reasonable
results. Once the CNILUT is trained, we can further fine-
tune it to perform blending by yielding random condition
vector weights (i.e. softmax weights) and the corresponding
blended outputs; these represent plausible convex combina-
tions of the three basis 3D LUTs.

References
[1] https://3dlutcreator.com/3d-lut-creator—materials-and-

luts.html. Accessed: 2023-03-05. 4
[2] https://blog.google/products/pixel/introducing-google-

tensor/. Accessed: 2023-03-05. 2
[3] https://machinelearning.apple.com/research/neural-engine-

transformers. Accessed: 2023-03-05. 2
[4] https://research.ibm.com/blog/ibm-artificial-intelligence-

unit-aiu. Accessed: 2023-03-05. 2

[5] https://semiconductor.samsung.com/newsroom/tech-
blog/all-about-exynos-2-an-upgraded-mobile-experience-
the-important-role-of-cpu-and-npu-in-smartphones. Ac-
cessed: 2023-03-05. 2

[6] https://technave.com/gadget/qualcomm-snapdragon-8-gen-
2-will-offer-greatly-improved-gpu-npu-and-isp-31990.html.
Accessed: 2023-03-05. 2

[7] https://www.sony.com/content/sony/en/en us/sca/company-
news/press-releases/sony-electronics/2022/sony-electronics-
new-alpha-7r-v-camera-delivers-a-new-highresolution-
imaging-experience-with-aibased-autofocus.html. Ac-
cessed: 2023-03-05. 2

[8] Abdelrahman Abdelhamed, Stephen Lin, and Michael S
Brown. A high-quality denoising dataset for smartphone
cameras. In CVPR, pages 1692–1700, 2018. 1, 2

[9] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge
on single image super-resolution: Dataset and study. In
CVPR Workshops, pages 126–135, 2017. 1, 2

[10] Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo
Durand. Learning photographic global tonal adjustment with
a database of input / output image pairs. In CVPR, 2011. 4,
5, 8

[11] Marcos V Conde, Steven McDonagh, Matteo Maggioni,
Ales Leonardis, and Eduardo Pérez-Pellitero. Model-based
image signal processors via learnable dictionaries. In AAAI,
volume 36, pages 481–489, 2022. 1, 8

[12] Marcos V Conde, Florin Vasluianu, Javier Vazquez-Corral,
and Radu Timofte. Perceptual image enhancement for
smartphone real-time applications. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 1848–1858, 2023. 2

[13] Mauricio Delbracio, Damien Kelly, Michael S Brown, and
Peyman Milanfar. Mobile computational photography: A
tour. arXiv preprint arXiv:2102.09000, 2021. 1

[14] Eric Garcia and Maya Gupta. Lattice regression. NeurIPS,
22, 2009. 2, 3

[15] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,
William T Freeman, and Thomas Funkhouser. Learning
shape templates with structured implicit functions. In ICCV,
pages 7154–7164, 2019. 2

[16] Michaël Gharbi, Jiawen Chen, Jonathan T Barron, Samuel W
Hasinoff, and Frédo Durand. Deep bilateral learning for real-
time image enhancement. ACM Transactions on Graphics
(TOG), 36(4):1–12, 2017. 2

[17] Chunle Guo, Chongyi Li, Jichang Guo, Chen Change Loy,
Junhui Hou, Sam Kwong, and Runmin Cong. Zero-reference
deep curve estimation for low-light image enhancement. In
CVPR, pages 1780–1789, 2020. 2

[18] Felix Heide, Markus Steinberger, Yun-Ta Tsai, Mushfiqur
Rouf, Dawid Pajak, Dikpal Reddy, Orazio Gallo, Jing Liu,
Wolfgang Heidrich, Karen Egiazarian, et al. Flexisp: A flex-
ible camera image processing framework. ACM Transactions
on Graphics (ToG), 33(6):1–13, 2014. 1

[19] Daniel Hernandez-Juarez, Sarah Parisot, Benjamin Busam,
Ales Leonardis, Gregory Slabaugh, and Steven McDonagh.
A multi-hypothesis approach to color constancy. In VPR,
2020. 1



[20] Andrey Ignatov, Cheng-Ming Chiang, Hsien-Kai Kuo, Anas-
tasia Sycheva, and Radu Timofte. Learned smartphone isp on
mobile npus with deep learning, mobile ai 2021 challenge:
Report. In CVPR Workshops, pages 2503–2514, 2021. 1, 2,
3

[21] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang,
Max Wu, Tim Hartley, and Luc Van Gool. Ai benchmark:
Running deep neural networks on android smartphones. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV) Workshops, pages 0–0, 2018. 1, 2, 3, 8

[22] Andrey Ignatov, Radu Timofte, Maurizio Denna, and Abdel
Younes. Real-time quantized image super-resolution on mo-
bile npus, mobile ai 2021 challenge: Report. In CVPR, pages
2525–2534, 2021. 1, 2, 3, 8

[23] Andrey Ignatov, Luc Van Gool, and Radu Timofte. Replac-
ing mobile camera isp with a single deep learning model.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pages 536–537,
2020. 1, 2, 8

[24] Hakki Can Karaimer and Michael S Brown. A software
platform for manipulating the camera imaging pipeline. In
ECCV, pages 429–444, 2016. 1, 2, 6, 8

[25] Hakki Can Karaimer and Michael S Brown. Improving color
reproduction accuracy on cameras. In CVPR, 2018. 1, 2

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 9

[27] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1833–1844,
2021. 2

[28] Zhetong Liang, Jianrui Cai, Zisheng Cao, and Lei Zhang.
Cameranet: A two-stage framework for effective camera isp
learning. IEEE Transactions on Image Processing, 30:2248–
2262, 2021. 1, 2, 8

[29] Hai Ting Lin, Zheng Lu, Seon Joo Kim, and Michael S
Brown. Nonuniform lattice regression for modeling the cam-
era imaging pipeline. In ECCV, pages 556–568, 2012. 2

[30] Chengxu Liu, Huan Yang, Jianlong Fu, and Xueming Qian.
4d lut: Learnable context-aware 4d lookup table for image
enhancement. arXiv preprint arXiv:2209.01749, 2022. 2

[31] Shuai Liu, Chaoyu Feng, Xiaotao Wang, Hao Wang, Ran
Zhu, Yongqiang Li, and Lei Lei. Deep-flexisp: A three-
stage framework for night photography rendering. In 2022
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 1210–1219, 2022.
1, 2

[32] Shuai Liu, Chaoyu Feng, Xiaotao Wang, Hao Wang, Ran
Zhu, Yongqiang Li, and Lei Lei. Deep-flexisp: A three-stage
framework for night photography rendering. In CVPR, pages
1211–1220, 2022. 1, 2, 8

[33] Long Ma, Tengyu Ma, Risheng Liu, Xin Fan, and Zhongx-
uan Luo. Toward fast, flexible, and robust low-light image
enhancement. In CVPR, pages 5637–5646, 2022. 2

[34] Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack,
Mahsa Baktashmotlagh, and Anders Eriksson. Implicit sur-

face representations as layers in neural networks. In ICCV,
pages 4743–4752, 2019. 2

[35] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 2,
7

[36] Sean Moran, Pierre Marza, Steven McDonagh, Sarah
Parisot, and Gregory Slabaugh. Deeplpf: Deep local para-
metric filters for image enhancement. In CVPR, pages
12826–12835, 2020. 2

[37] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics
(ToG), 41(4):1–15, 2022. 2, 3, 5

[38] Seungjun Nah, Sanghyun Son, Suyoung Lee, Radu Timofte,
and Kyoung Mu Lee. Ntire 2021 challenge on image deblur-
ring. In CVPR Workshops, pages 149–165, 2021. 2

[39] Eli Schwartz, Raja Giryes, and Alex M Bronstein. Deepisp:
Toward learning an end-to-end image processing pipeline.
IEEE Transactions on Image Processing, 28(2):912–923,
2018. 1

[40] Gaurav Sharma and Raja Bala. Digital color imaging hand-
book. CRC press, 2017. 4, 5, 7

[41] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. In NeurIPS, vol-
ume 33, pages 7462–7473, 2020. 1, 2, 3, 4, 5, 7, 9

[42] Yannick Strümpler, Janis Postels, Ren Yang, Luc Van Gool,
and Federico Tombari. Implicit neural representations for
image compression. In ECCV, pages 74–91, 2022. 2

[43] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. In NeurIPS, volume 33, pages 7537–7547,
2020. 2, 3

[44] Ethan Tseng, Yuxuan Zhang, Lars Jebe, Xuaner Zhang, Zhi-
hao Xia, Yifei Fan, Felix Heide, and Jiawen Chen. Neu-
ral photo-finishing. ACM Transactions on Graphics (TOG),
41(6):1–15, 2022. 1, 8

[45] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang,
Peyman Milanfar, Alan Bovik, and Yinxiao Li. Maxim:
Multi-axis mlp for image processing. In CVPR, pages 5769–
5780, 2022. 2

[46] Tao Wang, Yong Li, Jingyang Peng, Yipeng Ma, Xian Wang,
Fenglong Song, and Youliang Yan. Real-time image en-
hancer via learnable spatial-aware 3d lookup tables. In
ICCV, pages 2471–2480, 2021. 1, 2, 8

[47] Wencheng Wang, Xiaojin Wu, Xiaohui Yuan, and Zairui
Gao. An experiment-based review of low-light image en-
hancement methods. Ieee Access, 8:87884–87917, 2020. 2

[48] Canqian Yang, Meiguang Jin, Xu Jia, Yi Xu, and Ying Chen.
Adaint: Learning adaptive intervals for 3d lookup tables
on real-time image enhancement. In CVPR, pages 17522–
17531, 2022. 1, 2, 3, 7, 8



[49] Canqian Yang, Meiguang Jin, Yi Xu, Rui Zhang, Ying Chen,
and Huaida Liu. Seplut: Separable image-adaptive lookup
tables for real-time image enhancement. In ECCV, pages
201–217, 2022. 2, 8

[50] Hui Zeng, Jianrui Cai, Lida Li, Zisheng Cao, and Lei Zhang.
Learning image-adaptive 3d lookup tables for high perfor-
mance photo enhancement in real-time. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2020. 1, 2, 3,
7, 8

[51] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and
Lei Zhang. Beyond a gaussian denoiser: Residual learning of
deep cnn for image denoising. IEEE transactions on image
processing, 26(7):3142–3155, 2017. 2

[52] Zhaoyang Zhang, Yitong Jiang, Jun Jiang, Xiaogang Wang,
Ping Luo, and Jinwei Gu. Star: A structure-aware
lightweight transformer for real-time image enhancement. In
ICCV, pages 4106–4115, 2021. 2

[53] Luxi Zhao, Abdelrahman Abdelhamed, and Michael S
Brown. Learning tone curves for local image enhancement.
IEEE Access, 2022. 1, 2, 8


