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In the film industry, the same movie is expected to be
watched on displays of vastly different sizes, from
cinema screens to mobile phones. But visual induction,
the perceptual phenomenon by which the appearance
of a scene region is affected by its surroundings, will be
different for the same image shown on two displays of
different dimensions. This phenomenon presents a
practical challenge for the preservation of the artistic
intentions of filmmakers, because it can lead to shifts in
image appearance between viewing destinations. In this
work, we show that a neural field model based on the
efficient representation principle is able to predict
induction effects and how, by regularizing its associated
energy functional, the model is still able to represent
induction but is now invertible. From this finding, we
propose a method to preprocess an image in a
screen–size dependent way so that its perception, in
terms of visual induction, may remain constant across
displays of different size. The potential of the method is
demonstrated through psychophysical experiments on
synthetic images and qualitative examples on natural
images.

Introduction

In visual perception, induction designates the effect
by which the lightness and chroma of a stimulus are
affected by its surroundings. Visual induction can take
two forms: assimilation, when the perception of an
object shifts toward that of its surround, or contrast,

when the appearance of an image region moves away
from that of its local neighborhood. See Figure 1 for
some examples.

The groundbreaking experiments of Helson in
1963 (Helson, 1963) aimed to quantify the perceptual
phenomena first formally described by von Bezold
(1874) and Gelb (1930), using matching experiments
with printed induction bar patterns and isolated
Munsell patches. Specifically, observers had to judge
the appearance of grey bars over white or black
backgrounds. When the bars were very thin, the
observers reported assimilation; as the bars increased in
width, the assimilation effect became less pronounced,
and after some point the observers started to report
contrast, whose effect became increasingly more
pronounced as the width of the bars increased
(Figure 2). A similar result for the chromatic case was
reported by Fach and Sharpe (1986), who modulated
the spatial frequency of patterns as opposed to the
target background proportionality variation of Helson.
Their conclusion was that, for higher spatial frequencies
visual induction takes the form of assimilation,
whereas for lower spatial frequencies it takes the form
of contrast. Although not all confirm these early
observations, there exists a large body of later work
(e.g., Brenner, Ruiz, Herraiz, Cornelissen, & Smeets,
2003; Brown & MacLeod, 1997; Harrar & Vienot,
2005; Monnier & Shevell, 2003; Shevell & Wei, 1998;
Shevell & Monnier, 2005; Wesner & Shevell, 1992)
corroborating the importance of the spatial distribution
and variability of inducing surrounds. Regarding
visual induction models, we single out the work of
Otazu, Parraga, and Vanrell (2010), which is based on
wavelet decompositions, and the very recent work of
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Figure 1. Induction examples. Left: lightness contrast; the center gray squares have the same luminance value but the one surrounded
by white is perceived darker and the one surrounded by black is perceived lighter. Middle: lightness assimilation; all gray bars have
the same luminance value but the gray bars surrounded by black are perceived as being darker than the ones surrounded by white,
which are seen as being lighter. Right: chromatic induction; the central and inducing rings on both sides have the same RGB
tristimulus values, but all rings are perceived differently due to their rearrangement.

Figure 2. Induction type depends on spatial frequency. Low
spatial frequencies induce contrast, while high spatial
frequences induce assimilation. Reprinted with permission
from Helson (1963). © The Optical Society.

Song, Faugeras, and Veltz (2019), that uses a neural
field model.

In the film industry, the same movie is expected
to be watched on displays of vastly different sizes,
from cinema screens to mobile phones. But the typical
viewing angle depends on screen size, being larger
for larger displays; therefore, the same image content
will have a higher spatial frequency when seen on
a small screen than when seen on a larger one. As
a consequence, the visual induction effects on both
screens may not be of the same magnitude or even
type: in the smaller display, induction effects of the
contrast kind will have less magnitude and tend toward
assimilation.

It is common practice in motion picture distribution
to manually modify the original mastered picture

when distributing to different display scenarios. In
this process, a skilled artist works to ensure that the
visual storytelling intentions of the piece in its original
format are preserved. For instance, a piece that had
an original theatrical release may be remastered for
separate releases to home video, broadcast television,
streaming, and so on. However, new standards and
developments in the display industry of the past decade
(high dynamic range, wide color gamut, 4K and 8K
displays, mobile devices) have increased the variability
in potential content destinations to the point where
manual processing is no longer a feasible solution
for handling distribution masters. For this reason,
it is an increasingly relevant effort for the motion
picture industry to develop solutions to adjust content
automatically considering the specific viewing scenario
parameters of the viewer.

With these notions in mind, in this work we
make three main contributions. First, we show
that a neural field model based on the efficient
representation principle is able to predict induction
effects, and this model is validated using existing
psychophysical data. Second, we prove that, by
regularizing its associated energy functional, the model
becomes invertible. Finally, based on this invertible
formulation we propose a method to preprocess
an image in a screen–size dependent way so that
its perception, in terms of visual induction, may
remain constant across displays of different size. The
potential of the method is demonstrated through
novel psychophysical experiments on synthetic images
and a validation experiment with natural images;
all these data are made available as Supplementary
Material.

Neural field model for induction
effects

The efficient representation principle, introduced
by Attneave (1954) and Barlow (1961), is a general
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strategy observed across mammalian, amphibian and
insect species, where visual processing considers the
statistics of the visual stimulus and adapts to its changes
(Smirnakis, Berry, Warland, Bialek, &Meister, 1997). In
fact, efficient representation requires that the statistics
of the image input are matched by the coding strategy,
and although a global part of this coding strategy
must have evolved on long timescales (development,
evolution), to be truly efficient the coding must also
adapt to the local spatiotemporal changes of natural
images occurring at timescales of hours (e.g., from
daybreak to dawn), seconds (e.g., when we move from
one environment into another), or fractions of a second
(e.g., when our eyes move around). By constantly
adapting to the statistical distribution of the stimulus,
the visual system can encode signals that are less
redundant and this in turn produces metabolic savings
by having weaker responsiveness after adaptation, since
action potentials are metabolically expensive (Kohn,
2007).

Atick and Redlich (1992) make the point that there
are two different types of redundancy or inefficiency in
an information system like the visual system:

(1) If some neural response levels are used more
frequently than others. For this type of redundancy,
the optimal code is the one that performs histogram
equalization. There is evidence that the retina is
carrying out this type of operation at photo-receptor
level (Olshausen & Field, 2000), because their
response curves match the cumulative histogram of
the luminance distribution of the environment.

(2) If neural responses at different locations are not
independent from one another. For this type of
redundancy, the optimal code is the one that
performs decorrelation. There is evidence in the
retina, the lateral geniculate nucleus and the visual
cortex that receptive fields act as optimal “whitening
filters,” locally decorrelating the signal.

From the above, a local histogram equalization
(LHE) process would simultaneously reduce both types
of redundancy. Bertalmío, Caselles, Provenzi, and
Rizzi (2007) propose a variational method to improve
the color appearance of images, that performs LHE.
They introduce the following energy functional, whose
minimization yields the method’s result:

E (I )= α

2

∫
�

(
I (x) − 1

2

)2

dx − γ

∫
�2

w(x, y)|I (x)

−I (y)|dxdy + β

2

∫
�

(I (x) − I0(x))2dx, (1)

where I is an image channel in the range [0,1], � is the
image domain, x, y are pixels, w is a distance function
such that its value decreases as the distance between

x and y increases, I0 is the original image channel and
α, β and γ are positive weights.

The first term in the functional of Equation 1
measures the dispersion around the mid-range response
of 1

2 , as in the gray world hypothesis for color constancy
which states that in a sufficiently varied scene the
average color will be perceived as gray (an observation
made by Judd (1940, 1979) and formalized by
Buchsbaum (1980) and therefore the illuminant color
can be estimated from the color average of the scene;
this implies that the minimization of E (I ) will make the
image mean tend to 1

2 , so that the first term is small, and
corresponding to the case where the illuminant is white.

The second term in the functional measures the
contrast as the sum of the absolute value of the pixel
differences (weighted, through w, by the distance
between said pixels); because of the negative sign in
front of this term, minimizing E (I ) will increase the
contrast.

Finally, because the third term measures the
difference with the original image I0, the minimization
of E (I ) will yield a result that can’t be too far away
from I0.

The gradient descent equation for this functional is

It (x)= −α

(
I (x) − 1

2

)
+ γ

∫
�

w(x, y)sgn(I (x)

−I (y))dy − β(I (x) − I0(x)) (2)

Starting from I = I0, Equation 2 is iterated until a
steady state is reached (corresponding with a minimum
of E), that will be the result of this algorithm.

The energy in Equation 1 introduces the influence
of spatial neighbors through the distance function
w. Without it (and with β = 0) the energy becomes
the one proposed by Sapiro and Caselles (1997),
whose minimization produces a (global) histogram
equalization of the original image. Therefore, we can
argue that the evolution Equation 2 performs local
histogram equalization.

This method was applied channel-wise on color
images in RGB (Bertalmío et al., 2007) and in a
color opponent color space like CIELAB (Zamir,
Vazquez-Corral & Bertalmío, 2017), and the results
showed that the LHE method has several good
properties:

(1) It has a very good local contrast enhancement
performance, producing results without visual
artifacts of any kind (only when the width of the
locality kernel w is very small do haloes start to
appear).

(2) It “flattens” the histogram, approaching histogram
equalization, as expected due to the relationship
of Equation 1 with the one in the histogram
equalization model of Sapiro and Caselles (1997).
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(3) It reproduces visual perception phenomena such as
simultaneous contrast and the Mach Band effect;
this is consistent with the functional of Equation 1
modeling perceived contrast in a localized manner,
with close neighbors exerting a higher influence than
far-away points.

(4) It yields very good color constancy results, being
able to remove strong color casts and to deal with
non-uniform illumination (a challenging scenario
for most color constancy algorithms, as discussed in
Bertalmío (2014b)).

Additionally, the LHE model of Bertalmío et al.
(2007) is closely related to the neural field model of
Wilson and Cowan, as pointed out in Bertalmío et
al. (2007) and further discussed in Bertalmío and
Cowan (2009). In particular, the evolution Equation
2 is very similar to the Wilson-Cowan equations (see
Bressloff, Cowan, Golubitsky, Thomas, & Wiener 2002;
Wilson & Cowan, 1972, 1973), which have a long
and thriving history of modelling cortical low-level
dynamics Cowan, Neuman, and Drongelen (2016).
It has been proven recently (Bertalmío et al., 2020)
that the Wilson-Cowan equations are not variational,
in the sense that they can’t be minimizing an energy
functional, and that the simplest modification that
makes them variational yields the LHE method of
Bertalmío et al. (2007); furthermore, the LHE model
provides a better reproduction of visual illusions
than the Wilson-Cowan model. The study of visual
illusions has always been key in the vision science
community, as the mismatches between reality and
perception provide insights that can be very useful to
develop new models of visual perception (Kingdom,
2011) or of neural activity (Murray, Vanrell, Otazu, &
Parraga 2013), and also to validate existing ones. It is
commonly accepted that visual illusions arise owing to
neurobiological constraints (Purves, Wojtach, & Howe,
2008) that limit the ability of the visual system, and are
therefore related to efficient representation. In short, the
LHE method (in its original formulation of Bertalmío
et al. (2007) and also when it considers orientation
(Bertalmio, Calatroni, Franceschi, Franceschiello, &
Prandi, 2020) is the generalization of theWilson-Cowan
equations that makes them compliant with the
efficient representation principle, and at the same time
this allows for an improved reproduction of visual
perception phenomena.

Modifying the LHE model so that it predicts
induction

Looking at Equation 2, we can see that the spatial
arrangement of the image data is only taken into
account by the weighting function w. But in practice w

is very wide, and therefore we can expect that the local
contrast enhancement procedure of Bertalmío et al.
(2007) will always produce contrast, not assimilation,
because, as we mentioned elsewhere in this article,
assimilation is linked to high spatial frequencies
(Shevell, 2003). To overcome the intrinsic limitations
of Bertalmío et al. (2007) with respect to induction,
we should introduce spatial frequency in the energy
functional. In Bertalmío (2014a) this is done by
making the parameter γ in Equation 2 change both
spatially and with each iteration, according to the local
standard deviation: if the neighborhood over which it
is computed is sufficiently small, the standard deviation
can provide a simple estimate of spatial frequency.
But also, the standard deviation is commonly used in
the vision literature as an estimate of local contrast.
The model in Bertalmío (2014a) can predict lightness
assimilation and further improves efficiency by reducing
redundancy: flattening the histogram and whitening the
power spectrum. Other attempts to modify the LHE
formulation so that it better deals with induction are
discussed in Bertalmío (2019).

Unfortunately, the modifications introduced to the
LHEmodel in Bertalmío (2014a) do not fit well with the
basic postulates of Wilson and Cowan’s theory. This is
why in this section we propose to adapt the LHE model
in a different manner to predict induction, with changes
that are motivated by neurophysiology data and that
now keep the model consistent with the Wilson-Cowan
formulation. Specifically, we want to take into account
the following biological phenomena.

Photoreceptor response
Photoreceptor response curves can be approximated

very well with the Naka-Rushton equation:

R(I ) = Rmax
In

In + Ins
, (3)

where R is the response, Rmax is the maximum or
saturation response, I is the intensity, n is an exponent
of around 0.75, and Is is the so-called semi-saturation
value, the intensity at which the response is one-half of
its maximum value and that roughly corresponds to the
average intensity level. Notice that the Naka-Rushton
equation is a monotonically increasing function and is
therefore invertible; this point will become important
elsewhere in this discussion. If we increase Is and plot R
in linear-log coordinates, as in Figure 3, then the curve
moves to the right, the same curve-shifting phenomena
observed when the background level increases.
Therefore, light adaptation can be seen as changing the
semi-saturation constant in the Naka-Rushton equation
(Shapley & Enroth-Cugell, 1984). Furthermore, from
Equation 3 and if n = 1, we can obtain Weber’s law.
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Figure 3. Photoreceptor response curves for primate cones, for
different background levels. Reprinted from Valeton and van
Norren (1983), Copyright 1983, with permission from Elsevier.

For this and other factors, it appears that the perceptual
effects of light adaptation can be mostly accounted for
by retinal processing (Meister & Berry, 1999).

Neural response nonlinearities and signal equalization
Neural adaptation performs a (constrained) signal

equalization by matching the system response to the
stimulus mean and variance (Dunn & Rieke, 2006),
thus ensuring visual fidelity under a very wide range of
lighting conditions. Figure 4 (left) shows that when the
mean light level is high, the nonlinear curve that models
retinal response to light intensity is a sigmoid function
with less steep slope than when the mean light level is
low. Figure 4 (right) shows that at a given ambient level,
the slope of the sigmoid is lower when the contrast is
higher. In both cases, the data are consistent with the
nonlinearity of the neural response to light performing
histogram equalization, since the nonlinearity behaves
as the cumulative histogram (which is the classical tool
used in image processing to equalize a histogram) does:
darker images and images with lower contrast typically
have less variance and therefore their cumulative
histograms are steeper. The psychophysical experiments
in Kane and Bertalmío (2016) corroborate that the
visual system performs histogram equalization by
showing how observers prefer display nonlinearities
that allow the displayed image to be perceived as having
a brightness distribution as close to uniform (i.e., with
an equalized histogram) as possible.

Asymmetry of neural response nonlinearity
Recent works from neurophysiology prove that OFF

cells (those that respond to stimuli with values below
the average stimulus level) change their gain more than
ON cells during adaptation (Ozuysal & Baccus, 2012),
and that the nonlinear responses of retinal ON and
OFF cells are different (Kremkow et al., 2014; Turner
& Rieke, 2016; Turner, Schwartz, & Rieke, 2018, see
Figure 5). These data on neural activity is consistent
with psychophysical data (Kane & Bertalmío, 2019;

Whittle, 1992) that demonstrates that our sensitivity
to brightness is enhanced at values near the average or
background level.

Retinal lateral inhibition can explain assimilation
Lateral inhibition creates the typical center-surround

structure of the receptive field of retinal ganglion
cells (RGCs), with the excitatory center owing to
the feed-forward cells (photoreceptors and bipolar
cells) and the inhibitory surround owing to the
inhibitory feedback from interneurons (horizontal and
amacrine cells). This center-surround organization is
a very important instance of efficient representation,
performing signal decorrelation and allowing to
represent with less resources large uniform regions
because they generate little or no activity. It should
also be pointed out that a more recent work (Rucci &
Victor, 2015) contends that decorrelation is already
performed by the rapid eye movements that happen
during fixations, and therefore that the signal arrives
already decorrelated at the retina: the subsequent spatial
filtering performed at the retina and downstream must
have other purposes, like enhancing contrast.

Classical studies assumed that assimilation had to
take place at a later stage than the retina, most probably
at the cortex, because it needs a much longer range of
interaction between image regions than what lateral
inhibition could provide with the classical receptive
field size. But in Yeonan-Kim and Bertalmío (2016a)
Yeonan-Kim and Bertalmío showed that, in fact,
assimilation can start already in the retina. They took
classic retinal models, those of Wilson (1997) and van
Hateren (2005), and adapted them so that parasol
RGCs have a surround that is now dual, with a narrow
component of large amplitude and a wide component
of smaller amplitude. This different form for the
surround is based on more recent neurophysiological
data showing that retinal interneurons have retinal
fields that are much more extended than previously
assumed, and RGC responses show a component that
goes beyond the classical receptive field.

Based on this discussion, we propose the following
two-stage model:

(1) The image stimulus I , which is a scalar-valued linear
image (i.e., an image channel proportional to light
intensity) is passed through the photoreceptor
nonlinearity, modeled as a Naka-Rushton equation,
yielding J0:

J0 = NR(I ) = In

In + Isn
, (4)

where the exponent of the NR equation is chosen so
as to maximize the equalization of the histogram of
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Figure 4. Neural adaptation to mean and variance. Left: neural response to higher (in green) and lower (in blue) mean luminance.
Right: neural response to higher (in red) and lower (in blue) luminance variance. Adapted from Dunn and Rieke (2006), Copyright
2006, with permission from Elsevier.

Figure 5. ON and OFF cells have different nonlinear response functions. Reprinted from Turner and Rieke (2016), Copyright 2016, with
permission from Elsevier.

J0, and the semi-saturation constant Is is the median
average of the image.

(2) The following evolution equation is run until a
steady state is reached:

Jt (x) = − α(J(x) − Km ∗ J(x))

+ γ

∫
�

Kc(x, y)σ (J(x) − J(y))dy

− β(J(x) − J0(x)) (5)

Here Km,Kc denote kernels each expressed as a sum
of two Gaussian functions and ∗ is the convolution
operation, so now instead of a global mean 1/2 as in
Equation 2 we have a local mean Km ∗ J(x) and local
neighbors exert more influence but very far apart
points can affect the response as well. Furthermore,
σ is a sigmoid function such that σ (0) = 0, but not
necessarily anti-symmetric, hence allowing positive
and negative responses to be of different magnitude.
Let us note that Equation 5 is the gradient descent
equation for an energy functional where the contrast

term has this form:∫
�2

Kc(x, y)φ(J(x) − J(y))dxdy (6)

where φ(·) is a function whose derivative is the
sigmoid σ (·).

Let’s call this model LHEI (I for “induction”) for the
sake of brevity.

Methods: LHEI model validation

To validate LHEI, we will use the chromatic
induction data of Monnier (2008). In that work,
observers were shown a test ring of some given
chromaticity, surrounded by 16 concentric rings
(one-half on each side of the test) that constitute the
inducing pattern. This is the test image. The surrounding
rings alternated between two chromaticities, which in
isolation seem to be lime and purple, selected because
they differently stimulate the S cones only. Next to
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Figure 6. Chromatic experiment stimuli. Left: test ring
surrounded by concentric inducing rings of two alternating
chromaticities. Right: comparison ring over uniform
background. Note that the comparison and test rings are
presented at the same chromaticity, and in the actual
experiment, these patterns are placed over a black surround.

this image, the observer was shown a comparison
ring, with the same dimensions as the test ring, but
in this case simply presented over a uniform grey
background (i.e., without inducing patterns). This
is the comparison image. Observers adjusted the
hue, saturation and brightness of the comparison
ring to match the appearance of the test ring. See
Figure 6 for an illustration of this experimental
set-up.

The resulting chromaticity of the comparison ring is
not the same as the chromaticity of the test, owing to
the induction effects produced by the lime and purple
rings that surround the test ring: the difference in the
S-chromaticity (associated to the S cones) between test
and comparison rings is a color shift that quantifies the
induction and can be plotted against the S-chromaticity
of the test ring. Monnier performed this experiment
with four observers, seven test-ring chromaticities, and
the two possible alternating orders for the inducing
rings (lime followed by purple, or the other way
round).

We have optimized the parameters of the LHEI
model so that when we apply it to the test and
comparison images, the resulting S-chromaticity
difference between test and comparison ring is as close
as possible to the one reported in the psychophysical
experiments. For each of the initial conditions, we
run our method using both the original rings, and the
comparison ring adjusted by observers as input. Then,
our minimization looks at the difference between the
test ring in these two images. The error between the two
images is computed as the L2 difference between the
value of the central rings. Finally, the error for each of
the initial conditions is summed up to obtain the total
error to minimize.

Results
The resulting psychophysical data, averaged over

the observers, is shown in Figure 7 as orange triangles

Figure 7. Results from applying the LHEI model to observer data
from Monnier (2008). Triangles represent mean observer
responses and lines represent LHEI model predictions, both in
terms of S-chromaticity difference between test and
comparison rings. The 95% confidence intervals are included
for each of the observer data points. Values above zero: results
when inducing rings next to the test ring have a lime hue.
Values below zero: results when inducing rings next to the test
ring have a purple hue.

with purple error bars for the purple/lime patterns and
green triangles with blue error bars for the lime/purple
patterns. The error bars represent 95% confidence error
intervals about the mean, averaged across observers and
trial repetitions. The fits of the model are shown in solid
lines, in orange for the purple/lime pattern case and in
blue for the lime/purple case. As we can see, the fit is
quite good and qualitatively similar to the one obtained
by Song et al. (2019) using a neural field model based
on the Wilson-Cowan formulation. For the purple/lime
pattern case, our model makes predictions that are
within the range of experimental error for all test ring
S channel values; however, it does not properly fit the
steeper slope of the lime/purple case.

Invertible model for induction
effects

As stated in the Introduction, we want to derive a
method that matches induction effects among screens
of different size, not a method that estimates induction
effects and their appearance. The difference is very
relevant, and it is similar to the fact that colorimetry
and color spaces allow us to determine quite accurately
when two colors are perceived as different or the same,
but they cannot tell us the perceived appearance of said
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colors, as there are many external factors that play a
role in this; we must remark though that this approach
contrasts with that of works like (Bertalmío et al.,
2020), where the output of the algorithm was explicitly
simulating the appearance.

Let’s say that we have a color appearance model M
that is invertible and capable of reproducing induction
effects. We consider two viewing scenarios A and B
in which the same image stimulus I is presented on
a display, and both scenarios have identical viewing
conditions except that the screen in A has a different
size than the screen in B. In this study, we isolate for
viewing angle and its effect on color perception; it is
well-known that other viewing parameters, like ambient
illumination, screen luminance and dynamic range,
display color gamut, and so on, may have a significant
impact on perception, but the usual practice in the
literature, given the challenges in modeling vision, is to
vary one of these elements while the others are kept
fixed. The model M predicts for image I an appearance
MA(I ) in scenario A and an appearance MB(I ) in
scenario B. These appearances will be different because
MA and MB are two instances of model M that will
generally have different parameter values. The reason
for this is that, as we mentioned in the section on neural
processes adapt to the scene statistics, and by scene
we mean the whole field of view, a part of which is the
screen where the image stimulus is displayed. Therefore,
different viewing angles will result in different scenes,
consequently yielding different adaptation processes. In
fact, in linear-nonlinear (L+NL) models of vision (and
the model M we will be proposing shortly will be of
this kind), adaptation is actually defined as the change
of the model parameters when the input changes, and
the full-view scenes in A and B provide different inputs
to the visual system because the viewing angle of the
screen is different.

Then, our induction matching goal can be
expressed as determining the parameters for the
compensation method C = M−1

B · MA, because when
the preprocessed image C(I ) is shown on screen B
its appearance, including induction effects, will be
MB(C(I )) = MB · M−1

B · MA(I ) = MA(I ), that is, the
same as if the image was seen on screen A. In short,
having an invertible appearance model M for induction
allows us to have an explicit analytical expression for
C, and the parameter values for C might be found so
that they match psychophysical data. Furthermore,
and very importantly, we don’t need to optimize M so
that it accurately predicts induction effects in image
appearance, which is a very challenging open problem:
we just need to optimizeC so that the induction effects
match in the two conditions.

This implies, however, that neither the LHEI model
nor any of the color induction models in the literature
(e.g., Otazu et al., 2010; Song et al., 2019) can be used
for our induction compensation goal, as they are not

invertible. In what follows, we show how to modify the
LHEI model so as to make it invertible.

In Kim, Batard, and Bertalmío (2016), the authors
went back to the retinal models that were updated
and analyzed in Yeonan-Kim and Bertalmío (2016b),
studied what were their most essential elements, and
produced the simplest possible form of equations to
model the retinal feedback system that are nonetheless
capable of predicting a number of significant contrast
perception phenomena like brightness induction
(assimilation and contrast) and the band-pass form
of the contrast sensitivity function. These equations
form a system of partial differential equations that
minimize an energy functional, closely related to the
one of the LHE method of Bertalmío et al. (2007), but
where the absolute value function in the second term of
Equation 1 is raised to the power of two. This has the
effect of regularizing the functional, making it convex,
and therefore its minimum can be computed with a
single convolution, whereas the functional in Bertalmío
et al. (2007) is non-convex and as a consequence its
minimum has to be found by the iteration of the
gradient descent equation. If we follow this approach
to modify the contrast term of the energy functional
associated to the LHEI method (Equation 6), we
obtain:∫

�2
Kc(x, y)(J(x) − J(y))2dxdy, (7)

where as usual � is the rectangular domain of the image
that is displayed (i.e., not the whole field of view).

With this modification, the gradient descent equation
previously shown in Equation 5 now becomes:

Jt (x)= − α(J(x) − Km ∗ J(x))

+ γ

∫
�

Kc(x, y)(J(x) − J(y))dy

− β(J(x) − J0(x)) (8)

Now the minimum can be computed directly by
convolving the input image J0 with a kernel S:

S = F−1
(

β

α + β − γ − αF (Km) + γF (Kc)

)
, (9)

where F represents the Fourier transform. The kernel S
clearly has an inverse kernel S−1 such that S ∗ S−1 = δ:

S−1 = F−1
(

α + β − γ − αF (Km) + γF (Kc)
β

)
(10)

We propose the following modified version of the
LHEI model, also consisting of two stages:
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(1) The first stage is identical to the first stage of the
LHEI model:

J = NR(I ) = In

In + Isn
, (11)

where we recall that we consider I to be a
scalar-valued image, I : � → [0, +∞), so
J : � → [0, 1).

(2) The second stage produces the output O as the
convolution of J with the kernel S of Equation 9:

O = S ∗ J (12)

Let’s call this model M.
The output O = M(I ) can be expressed as

M(I ) = S ∗ NR(I ). The inverse of the Naka-Rushton
equation is

NR−1(J ) = Is ·
(

J
1 − J

) 1
n

, (13)

and the inverse kernel S−1 was defined in Equation 10.
Therefore, the inverse of M can be expressed as
M−1(O) = NR−1(S−1 ∗ O).

Induction compensation method

Based on model M, defined in Equations 11 and
12, we propose the following method for induction
compensation for screens of different size.

If an image I is to be shown on screen B producing
the same induction effects as if it were shown on screen
A, in both cases under the same viewing conditions,
then a compensation methodC must be applied to the
image I , yielding an imageC(I ). WhenC(I ) is displayed
on screen B the induction effects are the same as when I
is displayed on screen A. The compensation methodC
is:

C(I ) = M−1
B (MA(I ))

= NR−1
B (S−1

B ∗ SA ∗ NRA(I )) (14)

The linear filter S of model M has a center-surround
form that, as mentioned in the Section on the Invertible
model of conduction effects, can perform decorrelation
and contrast enhancement. For images with very
high contrast, convolution with SA could produce
over enhancement, resulting in some undershoot or
overshoot values falling outside the range [0,1], and in
some cases these values might still remain out of range
after convolution with S−1

B , making it impossible to
apply the function NR−1

B to them because its domain

is [0,1]. To prevent these issues, in practice we clip
all out-of-range values of S−1

B ∗ SA ∗ NRA(I ) so that
negative values are set to 0 and values greater than 1 are
set to 1; nonetheless, it is not expected that this clipping
procedure produces visible artifacts, as attested by the
natural image examples in Figure 12.

Following Equation 14, our goal is to fit the two
exponents of the Naka-Rushton equations and
the two convolutions S−1

B and (SA). Following the
approach used in the section on the Invertible model of
conduction effects to represent kernel S, we define what
we call the compensation kernel SC as SC = SB

−1 ∗ SA:

SC = SB
−1 ∗ SA = F−1

(
D2 + D1F (KF )
C2 +C1F (KF )

)
(15)

where KF is the weighted sum of four Gaussians, and
C1,C2, D1, and D2 are real numbers.

The formulation was presented for single-channel
images. For color images, we will apply the induction
compensation C channel-wise. To this end, given an
input image in the display-referred RGB space, we
will first transform it to a cone-space representation
(CAT02 LMS space) (Rich, 2006) by applying the
electro-optical transfer function of the input space,
converting to CIEXYZ 2-degree tristimulus values
given the chromaticity coordinates of the primaries
and white point, and finally applying the 3 × 3 linear
transformation matrix from XYZ to CAT02. In this
space, we will apply the first Naka-Rushton equation
NRA to the individual L, M, and S channels. In this step
the Naka-Rushton exponents will be equal for all the
channels. After this is done, we will further convert the
color representation to an opponent one, with channels
that we callY , op1 and op2, computed as:

Y = L + M + S (16)

op1 = L − M (17)

op2 = 2S − (L + M ). (18)

Then, our method will convolve each of the channels
with the compensation kernel SC. Let us note that
there will be two different compensation kernels:
one for the chromatic channels and another for the
achromatic one. Once this is done, our method will
apply the inverted opponent channel transformation,
clipping to the range [0,1] and the inverse of the second
Naka-Rushton equation NRB (see Equation 14). Again
here, the Naka-Rushton exponent is kept equal for the
three channels. Finally, to convert the processed image
back to a state that is ready for display, the inverse 3
× 3 linear transformation (CAT02 to XYZ) from the
forward process is applied followed by the primary
matrix (XYZ to RGB) and the inverse electro-optical
transfer function of the destination space.
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To validate our method, we consider a scenario
where A corresponds with a cinema screen and B with a
mobile display. We perform psychophysical experiments
for both achromatic and chromatic induction patterns
where observers look at a display with two scales of
the same image, and they have to adjust the values of
a given region of the small-scale image (corresponding
with the mobile viewing scenario) so that it matches
the appearance of that region on the large-scale image
(corresponding with the cinema viewing condition).
For cinema, three picture heights viewing distance (a
common figure for mastering) is assumed resulting
in a vertical viewing angle of 18.92◦; for the mobile
condition, the same viewing angle as in Canham,
Murdoch, and Long (2018) is used resulting in a scaling
factor of 0.39 between the two viewing scenarios. Using
the data from these experiments the parameters of
two separate kernels—one for the achromatic channel,
another one for the chromatic channels—and the two
Naka-Rushton exponents nA, nB will be found by
minimizing the error between the observer data and the
method results.

Methods: Achromatic induction

Following the preceding work Bertalmío, Batard, and
Kim (2016), the achromatic experiment was intended
to be a direct expansion of the experiments of Helson
(1963) for the case of emissive stimuli. To this effect, we
used the same type of induction pattern with a fixed
inducer bar width and varied the comparison bar width.
In this case however, observers reported the necessary
correction factor directly by adjusting the luminance
of the comparison bars in the mobile scaling to match
those in the cinema scaling (test). The additional
variable of starting comparison bar luminance was also
varied between experimental presentations such that
observers could approach their response from different
directions. The complete matrix of experimental factors
is shown in Table 1.
Laboratory setup: Experiments were conducted under
dark surround viewing conditions on a calibrated

Factor Type Levels

Comparison
width

Variable 0.19◦, 0.38◦, 0.54◦, 0.76◦, 0.96◦

Initial
comparison
luminance

Variable 4.0,8.1,22 cd/m2

Inducing bar
width

Constant 0.19◦

Table 1. Achromatic experimental factors. Visual angles
correspond with the cinema size patterns.

Figure 8. Achromatic experiment stimulus. Note that all gray
bars are presented at the same value, and in the actual
experiment, these patterns are placed over a black surround.

Sony PVM-A250 reference monitor, representing an
easily controllable cinema-like viewing environment.
The monitor was calibrated to Rec. 709 primaries
with a D65 white point and a 2.4 gamma decoding
nonlinearity. These settings were verified routinely
before experimental sessions using a Klein K10-A
colorimeter. The experimental cadence was controlled
by a MATLAB test bed using the Psychophysics
toolbox (Brainard, 1997; Pelli, 1997) to display stimuli.
Observers adjusted the comparison bar luminance via
keyboard input to the experimental test bed.

Figure 8 shows the presented stimuli for the
achromatic experiment. As can be seen in the figure,
two patterns were presented on screen (except over a
black background, as opposed to the white surround
they are presented over in the figure.) Preliminary
experiments showed that the background color was
a relevant factor, so we elected to display patterns
over a black background to match the dark surround
viewing condition. Each pattern consists of two sides,
representing positive (white/gray) and negative contrast
(black/gray) respectively. Observers adjusted these two
sides separately, but both are included simultaneously
such that lightness references remain constant. The
white fields were presented just below the maximum
monitor white at a value of 90 cd/m2, while the black
fields were presented at a value of 0.6 cd/m2.
Procedure: Observers were ushered into the laboratory
and the experimental instructions were read aloud. The
instructions covered the purpose of the experiment, the
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observer task and the control scheme. Before starting
the trials, observers were given a test trial with the
experimenter in the room to familiarize themselves with
the controls. Then, observers completed the experiment
task for the 15 patterns with different target bar widths
and presentation values as they were presented on the
screen in a random order.
Observers: Ten observers (two female and eight male)
aged between 23 and 39 years participated in the
experiment. All observers had normal or corrected
acuity (20/20). Three observers are authors, and the
remaining seven were naive to the purpose of the study.
Optimization: The compensation model C was
optimized to fit the achromatic experiment data as
generally as possible, meaning that the mean observer
response from each target bar width experiment were
considered simultaneously in the error function. The
error was calculated as the sum squared difference in
luminance values between the observer responses and
a value sampled from the center of the comparison
bars after the method was applied. By optimizing in
this way, we show that the method can be made to
work generally for different spatial configurations.
The values obtained for this experiment following
the above procedure are: nA = 0.7861, nB = 0.7063,
KF = −1.14G156 + 1.86G29 + 0.13G3 − 1.76G40,
C1 = 3.94, C2 = 2.54, D1 = 2.46, D2 = 2.72. These
values have been obtained in relation to images of size
800 × 800.

Results
Figure 9 shows the average observer responses in

the experiment and the prediction provided by the
compensation model C. We can see how the observer
results are consistent with those of Helson (1963) in two
key points: first, when the visual angle (equivalently the
comparison bar line width) decreases, the appearance
tends to assimilation, and hence the compensation
requires enhancing the contrast; second, as the visual
angle increases, the amount of necessary compensation
should decrease. Our model responses are consistently
inside the range of experimental error for the observer
data.

Methods: Chromatic induction

Based on evidence that the phenomenon of
induction occurs after visual signals are separated
into different visual pathways, we expand on the
achromatic experiments by making color matches in
an opponent channel space, with the intention of
applying our compensation model C to the channels
separately. In this case, we chose CIELAB space
because it has some degree of perceptual uniformity.
In initial experiments we found that this expansion to

Figure 9. Achromatic experiment results. Yellow: original gray
value stimulus. Orange: average observer-selected value for
gray bars over black background, showing 95% confidence
intervals. Blue: average observer-selected value for gray bars
over white, showing 95% confidence intervals. Green:
prediction of induction compensation model C for bars over
black. Purple: model predictions for bars over white.

three-channel adjustment caused a great increase in the
difficulty of the experimental task. Thus, we simplified
the procedure by decreasing the number of variables.
In this case, we test four color sets in the mobile and
cinema sizes, and we test for three different comparison
ring starting colors. To avoid observer fatigue,
experiments were conducted two color sets at a time.
The complete matrix of experimental factors is shown in
Table 2.

For the chromatic experiments we took inspiration
from Monnier and Shevell (2004) and used concentric
circular induction patterns as shown in Figure 10.
Observers must adjust the CIELAB values of the
central ring of the comparison pattern (the achromatic
circular ring on the right side of each set) so that it
matches the appearance of the central ring of the test
pattern (the concentric circular pattern on the left side
of each set). This procedure was repeated for patterns
at mobile and cinema scaling settings, and the observer
reported correction was found by taking the difference
between responses (cinema − mobile). Otherwise, an
equivalent procedure to the achromatic experiment was
conducted in this case.
Laboratory setup: The laboratory conditions regarding
the display, surround, experimental test bed were all
the same as the achromatic experiment. One change,
however, was that observers input their responses
via a tangent element color correction panel, which
allowed for multichannel adjustments to stimuli with
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Factor Type Levels

Pattern scaling Variable cinema and mobile (39%) scaling
Initial comparison level Variable original, +10 a*b*, -10 a*b*
Test pattern colors Variable sets 1-4
Test pattern diameter Constant 11.0◦

Test to comparison distance (center to center) Constant 15.6◦

Pattern center diameter Constant 4.39◦

Table 2. Chromatic experimental factors. Test pattern element sizes are relative to the cinema condition, but their size in proportion
to each other is preserved for the mobile case.

Figure 10. Chromatic experiment stimuli corresponding with sets one through four. On the right side of each set is the comparison
ring surrounded by an achromatic field, which observers were asked to match to the test ring on the left, surrounded by the induction
pattern. To illustrate the strength of the visual illusion, the comparison and test rings are presented with the same RGB value here.
Note that in the actual experiment, these patterns are placed over a black background.

separate knobs allowing for a more natural and reactive
experimental interface in comparison with keyboard
input.
Stimuli: The stimuli for the chromatic experiments
included four concentric circular induction patterns of
different color arrangements similar to those used in
Monnier and Shevell (2004), as shown in Figure 10.
The two relevant features of these patterns are that
their circular shape results in less after-images when
compared to the bars, and their use of dual inducing
colors leads to a stronger induction effect, allowing
for more significant results to be gleaned from the
experiment. The L* value of all rings in these patterns
is kept consistent such that the focus of the observers’
task could be on correction for chromatic induction.
This said, observers were still permitted to adjust the
L* channel value as equiluminance between pattern
regions was not confirmed.

To find patterns that exhibited a strong inductive
effect, an experiment was performed in which 100
patterns containing regions with randomly selected

L*a*b* values within the Rec. 709 color gamut were
generated (a color gamut is the range of colors that a
display can reproduce, and Rec. 709 is the default gamut
specification most commonly observed by display
and television manufacturers). These patterns were
then shown side by side at the different scaling factors
tested in the experiment. Then, patterns for which
a hue shift could be identified between the different
scaling factors were singled out. Finally, the experiment
procedure was conducted for a single observer using
all selected patterns from the previous step. From these
results, the final patterns were selected based on the
criteria that the sensation of the target ring could be
reproduced successfully in isolation, given the gamut
of the monitor, and that a statistically significant
correction (given 95% confidence intervals) was called
for by the observer between the two test pattern scaling
factors. After several iterations of the experiment, six
total color sets were found. Administering the test to
multiple observers revealed that two of the sets should
be removed, because the target colors were too close
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Figure 11. Chromatic experiment results for the four tested color sets, with the a*b* value of the test ring centered at the origin. The
vectors represent the magnitude and direction of the color difference between the test ring and the inducing rings. The blue vectors
represent the first inducers for each test case, or the color of the ring immediately adjacent to the test ring, and the red vectors
represent the second inducer. The purple and green crosses represent the observer suggested compensation with 95% confidence
error bars, and the red stars represent the response predicted by our correction method. The bottom right plot (set four) was used to
test the model fit while the remaining three were used to train the model parameters.

to the gamut boundary for observers to make reliable
observations.
Observers: For the second color set, four observers
participated in the experiment (one female, three male)
and for the remaining three color sets, three observers
participated (three male). In both cases observer age
ranged between 23 and 36, and two observers are
authors while the remainder were naive to the purpose
of the study. All observers had normal or corrected
acuity (20/20).
Optimization: We performed these experiments for four
different concentric ring patterns, then optimized our
modelC so that it fits the data for three of these images
and finally validated our results on the remaining
image. To accomplish this, we apply the kernel SC only
to the two chromatic components of our opponent
channel space. The forward model is otherwise applied
as described earlier in the section, however during
the inverse process we stop after applying the 3 × 3
transformation from CAT02 to XYZ, and convert
this representation of the corrected image directly to

CIELAB, taking the monitor white point of D65 at 100
cd/m2 for the reference illuminant. The optimization
is performed in order to minimize the 	E error on
the test ring, and as we are using three different sets
for training the minimization considers the maximum
value of the 	E error on the three test rings. Since
our method is working in a color opponent space
different from CIELAB, when convolving kernel
SC with our chromatic channels, shifts in the L*
channel value may occur. To better comply with the
observer responses, which reported no L* correction
to be necessary, we decided to replace the L* channel
of our result by the L* channel of the original
image.

The values obtained for the case where set 4 is used
for testing (corresponding to results in Figure 11 and
column 5 in Table 3) are: nA = 0.5187, nB = 0.4439,
KF = −1.53G103 − 0.67G43 + 0.67G4 + 0.34G26,
C1 = 2.81, C2 = 1.30, D1 = 2.27, D2 = 1.60. Let us
note that these values have been obtained in relation to
images of size 800 × 800.
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Train on: 2-4 Train on: 1,3,4 Train on: 1,2,4 Train on: 1-3 Original Improvement
Test on: 1 Test on: 2 Test on: 3 Test on: 4 error (on test set)

Set 1 8.92 1.58 2.84 1.87 17.39 48.70%
Set 2 1.50 5.35 2.84 1.95 13.20 59.47%
Set 3 1.61 1.58 1.67 1.65 4.29 61.05%
Set 4 1.17 1.46 2.79 8.18 15.00 45.48%

Table 3. Error between the average observer response and our model’s prediction. We have performed the training for all
combinations of three sets, testing on the remaining set (columns two to five). Column six represents the original error, and column 7
represents our improvement, w.r.t. the original error in the test set.

Results
In Figure 11, the results of the chromatic experiment

are plotted in the two dimensional a*b* plane. The
results are limited to the chroma channels, as the
corrections reported by observers in the L* dimension
were not statistically significant (95% confidence error
ranges overlapped the origin for all tested cases.) For
each of the patterns, the origin of the coordinate system
is placed at the starting a*b* value of the test ring. In
order to illustrate their directional influence, the plots
depict the value of the inducing rings with a blue vector
for the value of the inducing ring that is closer to the
test ring, which we call the first inducer, and a red vector
for the value of the other inducing rings, that we call
the second inducer. The average observer response is
depicted with purple and green 95% confidence error
bars.

Looking at the observers’ responses, the induction
compensation results selected by observers tend to show
contrast mainly in the direction opposite to the first
inducer, which implies that the appearance of themobile
viewing condition shows assimilation in the direction of
the first inducer (because assimilation is compensated
by contrast). In this way, the results for sets two through
four were consistent with the classic assumptions on
induction, as well as the results of Helson (1963); Fach
and Sharpe (1986); Monnier (2008). However, our
first set shows that this cannot be taken as a general
rule, as observers reported the necessary correction to
be roughly in the assimilation direction of the second
inducer.

Regarding the ability of our compensation modelC
for fitting this data, in Figure 11 we added our results
for the optimized values presented. Our resulting
corrections predicted by C for each color set are
depicted with a red star. We can see for the train
cases that the predictions are within the range of
experimental error, and for all cases compensate input
in the proper direction.

To further study our model, Table 3 shows the error
(measured as 	E difference) between the average
observer response and our model’s prediction. As
explained above, given that we have four different sets,

we perform our experiments by training in three of
the sets and testing in the remaining one. This gives
us four different cases. In the table, columns two
to five represent each of the cases, with the model
error for the testing set shown in blue; in particular,
column five corresponds with the case illustrated in
Figure 11. Column six presents in red what we call
the “original” error, the 	E difference between the
original data and the result of the observer correction.
Finally, column seven shows the improvement that
our method presents over the original error, which
is in the range (45% − 60%), therefore highlighting
the advantage of applying our compensation method
instead of doing nothing and just rescaling the original
image.

Methods: Induction in natural images

Because the compensation method C was designed
with a direct imaging application in mind, it is
important to analyze its effect in the context of natural
images. In comparison with the synthetic stimuli used
to optimize and validate the model, the context of
real images introduces a significant increase in the
spatial complexity of stimuli. For example, the image
content could provide references for cognitive grouping
feedback and other higher order processes which could
be impactful to the induction effect (Murgia, 2016).
Thus, before the method can be proposed for practical
use, it is vitally important to first probe its behavior for
a variety of test content and viewing contexts to ensure
that it is tuned such that it improves the preservation of
creative intent with changes in presentation size as a
whole.

In addition to the image content, our experiments
revealed a number of additional viewing scenario
factors which were influential to the induction effect.
First, in initial iterations of the achromatic experiments,
we found that the background and surround conditions
can completely change the nature of the induction effect
(changing the direction of required compensation).
We also observed that induction effects are not only
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dependent on the relative scale adjustment between
stimuli, but also on the absolute scaling. Due to this,
a different correction would be required for stimuli
with absolute scaling of 2 and 1, than for stimuli with
absolute scaling of 1 and 0.5. Finally, our observers
reported during the experiments that there were visible
shifts in the appearance of the synthetic induction
patterns with the amount of time spent viewing
them.
Procedure: With all of these factors in mind, an
online validation experiment was designed and
conducted to evaluate the performance of the method
on natural images. The experiment was designed
and distributed using the PychoJS library and the
psychophysics-centered hosting platform Pavlovia
(Pierce et al., 2019). In the experiment, observers were
first given instructions to extinguish any direct light
sources as to make their viewing environment as dark
as possible. Then, observers conducted the virtual chin
rest test of Li, Joo, Yeatman, and Reinecke (2020) to
determine their pixel-per-degree viewing angle so that
stimuli could be adjusted to the correct presentation
size. They were asked to maintain their seating position
from this point in the experiment onward. Then,
observers were given instructions that explained
that they would be presented with original full-sized
reference images and corresponding down-scaled pairs
(some of which are altered with respect to their color
and contrast and others which are unaltered) at timed
intervals (5 seconds on, 2 seconds off), and would be
asked to evaluate the match using one of the following
options:

(1) The colors of this image have been altered
(2) The colors of this image may have been altered
(3) The colors of this image have not been altered

After this, the observers conducted the body of the
experiment, iterating through the test images in random
order.
Stimuli: The down-scaled versions include the original,
unaltered image and the image corrected with our
compensation method C. The method correction was
applied following the process detailed at the beginning
of the section, applying the kernel optimized in the
achromatic experiment to theY channel and the kernel
optimized in the chromatic experiment to the opponent
channels op1 and op2. A series of images were selected
which reflect a cinema or television shooting and
grading style. The images cover a range of scene types
and include important memory colors such as skin
tones, product labels, natural colors, and so on. To
avoid observer fatigue, considering the two repetitions
of each image and the minimum presentation time of
approximately 10 seconds, the number of test images
was limited to 33 to allow for observers to be able to

complete the experiment with ample observation time
in 20 minutes.
Observers: A total of 16 observers participated in the
experiment (10 male, six female) aged between 24 and
58 years. None of the observers are authors and all were
naive to the purpose of the experiment. One-half of the
observers work in an imaging related field and can thus
be considered expert observers, and the other one-half
were non-experts.

Results
Figure 12 illustrates the qualitative results of our

induction compensation method C on some natural
images. We can see how in our results the colors are
subtly but noticeably more vivid, for example, the
orange cone in the first row, the green teapot in the
third, the kid’s blue jacket and boots and the grass
in the fourth row, the yellow fish in the bottom row.
This increased vividness corresponds with a contrast
enhancement in the chroma, which should be cancelled
out by the visual assimilation (and resulting chroma
contrast reduction) produced when observing the
image under a smaller field of view; the relationship
between contrast enhancement and more vivid colors
is discussed in detail in Zamir et al. (2017); Zamir,
Vazquez-Corral, and Bertalmío (2021) and Bertalmío
(2019).

Although these results do not show visual artifacts
of any kind, these problems cannot be ruled out as they
might appear if the method’s parameters are optimized
differently and/or the method is tested on other images.

In analyzing the quantitative experimental results,
it is important to acknowledge that unlike the model
optimization experiments, this experiment did not
take place in a controlled laboratory setting and there
could be significant variation in final image appearance
between observers owing to display performance and
calibration, viewing environment limitations, and
adherence to the experimental cadence. Although
we took steps to limit this variation in the online
setting, this allowed for a lesser degree of control in
comparison to the previous experiments. The results of
Figure 13 show that, within this presentation context,
the induction effect is subtle in natural images as in the
majority of trials observers did not see a difference in
color appearance between scaling settings. In contrast,
the results of our method C were seen as having had
their color appearance shifted in the majority of trials.
Although this experiment was not a direct 2AFC
comparison between the control and the results of
our proposed method, these were the only two types
of images presented to observers and thus the results
can be interpreted comparatively, showing that the
correction provided by our method was of greater
magnitude than the shift caused by the induction effect
in this scenario.
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Figure 12. Left: original Images. Right: results of our method with parameters optimized for training sets one through three. Notice in
our results how colors are slightly more vivid, and the absence of visual artifacts. Images sourced from Deng et al. (2009).
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Figure 13. Validation experiment results: percentages of each response for the control (left) and for our proposed method (right).

Discussion

The primary goal of these experiments was to
determine the correction required to match the
appearance of induction pattern targets at two different
field of view scales. Based on the results of Helson
(1963) and Fach and Sharpe (1986), we took the simple
hypothesis that a greater degree of contrast would
always be observed in the larger field of view pattern.
Thus, the correction from small pattern to large for
a given channel should always be in the direction of
contrast, and the results of the achromatic experiment
confirmed our hypothesis.

For the chromatic experiments, making the
assumption that the phenomenon of induction occurs
after visual signals are separated into different visual
pathways, we chose to make color matches in an
opponent space with the intention of applying our
corrective method C to the channels separately,
with different optimization values compared with
the achromatic case. We found that the use of the
simple bar patterns of Fach and Sharpe (1986)
caused a multitude of problems in the chromatic case.
Observers reported weak induction effects as well as
strong afterimages when shifting their gaze between
test patterns. In addition, the direct comparison of
the cinema-sized pattern to the mobile pattern was
confusing to observers, as the inducers in the smaller
pattern appeared to be significantly less saturated. As a
solution, we took inspiration fromMonnier and Shevell
(2004) and used concentric circular induction patterns,
as shown in Figure 10, whose main features are that
their circular shape results in less afterimages when
compared to the bars, and their use of dual inducing
colors leads to a stronger effect, allowing for more
significant results to be gleaned from the experiment.

A procedure for the selection of color sets that
exhibited a strong induction effect is explained
in Methods: Chromatic induction. Although this

experiment was more or less informal in nature, its
results demonstrate the rarity of strong induction
effects given random color combinations, even if they
are arranged in synthetic patterns which emphasize
induction. Another interesting anomaly that can be
observed from this experiment is that despite the
random nature in which they were generated and
selected, the final four patterns seem to be quite similar
to each other, all containing an inducer of violet hue.

The results of the chromatic experiments presented
here clearly show that the original hypothesis (that
contrast effects will shift toward assimilation with an
increase in test pattern spatial frequency) can be broken.
Although three of the color sets showed this behavior,
we can see that the first color set breaks the trend, and
is closer to requiring correction in the assimilation
direction with respect to the second inducer. One clue
to this differing behavior is related to the violet inducers
which appear in each pattern. In all patterns for which
induction effects behaved as expected, the violet inducer
was directly adjacent to the test and was the primary
induction influence. However, for the first color set, the
violet field serves as the second inducer, which is not
directly adjacent to the test field, but still acts as the
primary induction influence.

Outside of these data, we also found patterns that
broke our simple hypothesis in preliminary experiment
iterations. From these iterations we observed that the
luminance level of the background/surround and the
hues of inducing and target patches to be relevant
factors. This type of conflicting and paradoxical finding
seems to be common in the study of induction, with
many works being based on the discovery of scenarios
which contradict previous findings (Monnier, 2008;
Murgia, 2016). Although this phenomenon can be
found in all research topics and is a sign of progress, its
frequency in this area is an indication that induction
as a whole is still very much an open problem, despite
its earliest formal works dating back nearly a century
and a half. This can be justified by the fact that the
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phenomenon is the result of complex interactions
involving both physiological and cognitive processes
(Singer & D’Zmura, 1994) on multiple visual pathways.

Although the model C was designed with the
intention that it would always correct the test targets
in the contrast direction, we have had some success
in optimizing a kernel which works more generally
in fitting to these four test cases. These results were
garnered by model fitting using three chromatic sets
and testing on a fourth one. Looking at Table 3, one
can see that the model C performs slightly better in
predicting examples which are within its test set in
comparison to when they are excluded, implying that
its behavior is somewhat biased toward its training
set.

Although the achromatic training set included a
number of cases for which the necessary induction
correction was negligible, our chromatic kernel is
trained exclusively on examples which required a large
correction between presentation sizes. Our process
of selecting these examples showed that this effect is
quite rare, even among synthetic patterns which are
specifically designed to produce strong induction effects.
The results of the validation experiment showed that the
effect is even more subtle in the case of natural images
when presented in a “wild” context with variation in
display and viewing environment conditions, with a
significant majority of observers reporting no color
shift in the control examples. In comparison, the
correction provided by our method was detectable by
observers in the majority of cases. Thus, it is likely that
our method in its current optimized state is producing
an exaggerated correction for what the practical
application requires. For this reason, the compensation
method presented here is to be interpreted as a proof of
concept and a contribution to the research in the field
as opposed to a procedure which is ready to be used in
practice.

A further interesting challenge is that the
compensation value observers reported to adjust
between mobile to cinema appearance could be outside
of any given monitor gamut space, or outside of the
gamut of physically realizable colors, depending on
the position of the test target and the magnitude and
direction of the induction shift between screen sizes. In
these scenarios, induction effects will only be partially
compensated for by the method C. We encountered
this issue with three of our four test sets, and opted
to clip all observer and kernel reported corrections
to the Rec. 709 gamut. By doing this, our model’s
results can be readily reproduced by the most common
displays, including those which we used for visual
proofing during its development. We later performed
a preliminary analysis with input encoded under the
larger standard color gamuts Rec. 2020 and CIE 1931
XYZ, where the clipping of observer corrections is
smaller for the former and almost negligible for the

latter. The results showed that the method C makes
corrections of similar accuracy when it is required to
reach out into larger color volumes.

Conclusion

In this work, we have shown that a neural field model
performing local histogram equalization is able to
predict chromatic induction effects. This is a variational
model, an embodiment of the efficient representation
principle, and by regularizing its associated energy
functional the model is still able to represent induction
and now becomes invertible. This fact allows us to use
the new invertible model as the basis for an induction
compensation method, which we call C, to preprocess
an image in a screen—size dependent way so that its
perception, in terms of visual induction, may remain
constant across displays of different size. The potential
of the method is demonstrated through psychophysical
experiments on synthetic images, both achromatic
and chromatic. Our results show that the established
assumption in the literature that induction tends
toward assimilation as the spatial frequency increases is
sometimes contradicted by the experimental data, and
therefore can’t be taken as a general principle.

We believe there are three main avenues to explore in
order to improve our proposed approach:

(1) Our induction compensation technique C is based
on a color appearance model that follows the
classic formulation of a cascade of linear-nonlinear
(L+NL) modules (Martinez-Garcia, Cyriac, Batard,
Bertalmio, & Malo, 2018) and has a biological
correlate, consisting of a nonlinear stage (the
Naka-Rushton equation that models photoreceptor
responses) followed by a linear stage (convolution
with a kernel that models lateral inhibition in the
retina). A L+NLmodel is valid for stimuli of a given
distribution seen under given viewing conditions, in
which case it may provide a good match to the firing
rate. But visual adaptation, an essential feature of
the neural systems of all species by which changes
in the stimuli produce a change in the input–output
relation of the system (Wark, Fairhall, & Rieke,
2009) alters the visual system response. Visual
adaptation is clearly a key element of the efficient
representation principle and it affects, among other
things, the spatial receptive field and temporal
integration properties of neurons, requiring changes
in the linear and/or the nonlinear stages of a L+NL
model in order to explain neural responses (Meister
& Berry, 1999). So, for example, depending on the
input the receptive field of a single neuron can have
different sizes or preferred orientations (Coen-Cagli,
Dayan, & Schwartz, 2012), or even change polarity
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(ON/OFF) (Jansen et al., 2018). For our purposes
of induction compensation, we should study how to
make the convolution kernel S depend on the input,
or instead to use a filter bank as is the traditional
approach with L+NL models for visual perception
(Wandell, 1995; Graham, 2011).

(2) Another option is to study how to make the LHEI
model invertible while keeping it as a nonlinear
neural field model (i.e., without regularizing its
associated functional), looking into a gradient ascent
equation or alternatively considering changing the
sign of the parameter γ in the model, as it has
been shown that with one sign for γ the model
increases the contrast while with the opposite
sign the model reduces the contrast (Bertalmío,
Caselles, & Provenzi, 2009; Zamir et al., 2021; Zamir,
Vazquez-Corral, & Bertalmío, 2014). We believe
this option has more potential because the resulting
compensation model would not be of L+NL form.

(3) Finally, a third avenue to explore, compatible with
the previous two, would be to design and carry
out psychophysical experiments for induction
compensation where observers are asked to adjust
values over the whole image and not just on a
particular region like the gray bars or the test ring.
Using this data, the correction method C could
be optimized such that it produces a balanced
correction for all of the spatially adjacent regions
in the patterns simultaneously, accounting for their
interdependent effects. Additionally, it would be an
interesting expansion of the work to include more
test sets in the chromatic case, which do not produce
strong illusions, as was done in the achromatic case,
as this would likely better represent the behavior of
the visual phenomenon in response to natural images.

Keywords: color perception, visual induction,
efficient representation principle, neural field models,
local histogram equalization, variational models,
Wilson-Cowan equations
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