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ABSTRACT

Image dehazing tries to solve an undesired loss of visibil-
ity in outdoor images due to the presence of fog. Recently,
machine-learning techniques have shown great dehazing abil-
ity. However, in order to be trained, they require training sets
with pairs of foggy images and their clean counterparts, or
a depth-map. In this paper, we propose to learn the appear-
ance of fog from weakly-labeled data. Specifically, we only
require a single label per-image stating if it contains fog or
not. Based on the Multiple-Instance Learning framework, we
propose a model that can learn from image-level labels to pre-
dict if an image contains haze reasoning at a local level. Fog
detection performance of the proposed method compares fa-
vorably with two popular techniques, and the attention maps
generated by the model demonstrate that it effectively learns
to disregard sky regions as indicative of the presence of fog, a
common pitfall of current image dehazing techniques.

Index Terms— Fog Detection, Image Dehazing, Weakly-
Supervised Learning, Multiple-Instance Learning

1. INTRODUCTION

Image dehazing, or fog removal, is the task of improving the
quality of images degraded by bad-weather, in order to en-
hance the performance of further computer vision applica-
tions, or just achieve a more pleasant image visualization.
Image dehazing has received much attention from the image
processing community in the last years. Initial attempts to
solve the ill-posed problem of fog removal relied on multiple
inputs [1]. More recently, single-image dehazing techniques
[2, 3, 4] achieved satisfactory results without any supplemen-
tary input. This is accomplished by imposing prior knowledge
on statistics of non-degraded natural images, like the Dark
Channel Prior [5], or the Color Attenuation Prior. Variants
involving non-local information [6], color lines [7], or image
fusion [8] have also been proposed.

Recently, machine learning-based image dehazing has
reached great levels of performance. In this setting, a non-
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Fig. 1. Left: A hazy image. Right: Attention map produced
by our method, indicating which regions of the scene trigger
the classifier decision, and showing that the model infers local
image properties learning only from image-level labels.

linear mapping between foggy images and either fog-free
counterparts or depth maps is learned from training data,
in a realization of a fully-supervised regression problem
[9, 10, 11]. If depth maps are regressed, these can then
be used to increase contrast in far-away areas of the scene.
Unfortunately, it is challenging to collect training data that
contains pairs of foggy and fog-free/depth images of ex-
actly the same scene. Hence, current methods are trained on
haze-free images on which a layer of synthetic fog is added.

Weakly-supervised learning offers an alternative to the
fully-supervised regime on which we only require ground-
truth information at the image level. In our case, instead of
needing a correspondence between hazy pixels and their haze-
free counterparts, we require only a single label per-image,
whether the image contains fog. This kind of training data is
much easier to collect, and our proposed weakly-supervised
method can extract useful local information from images us-
ing only this image-level information, as shown in Fig. 1.

In this paper, we introduce a weakly-supervised method
for the task of fog detection, i.e. predicting the presence of
fog within an image. The interest for this task stems from the
fact that current dehazing methods, when applied to clean im-
ages, can produce artifacts and unpleasant results, as has been
recently shown [12]. In these cases, it can be better to avoid
processing the image at all. Fog detection can also be use-
ful for comparing different algorithms, or deciding if the fog
removal step has been successful, or any relevant parameter
should be adjusted to achieve greater dehazing performance.



Fig. 2. The proposed model for weakly-supervised fog detection

2. LEARNING TO DETECT FOG FROM
WEAKLY-LABELED DATA

2.1. Weakly-Supervised Learning and MIL

In the supervised learning context, the Multiple Instance
Learning (MIL) framework consists of a relaxation on train-
ing data requirements in order to learn useful low-level infor-
mation from weakly labeled data, i.e. to infer local patch-level
information from global image-level labels [13]. In the MIL
paradigm, each training example is a collection of instances
referred to as bag. During training, the label of the bag is
propagated to the label of the instances contained on it, and it
has an influence on the classifier. The objective of training is
to be capable of inferring information regarding the instances
contained in a bag, based solely on the label of each bag.

In this paper, we propose to consider hazy and haze-free
images as bags containing instances interpreted as image re-
gions. The task we consider is to classify images into one
of these two classes, fog/fog-free, while jointly inferring in-
formation related to which image regions are responsible for
the image-level label. In this sense, our approach follows an
extension of the Standard MIL Assumption [13]. This prin-
ciple indicates that all the instances inside a negative bag are
negative, while a positive bag contains at least one positive
instance and an arbitrary number of negative instances. In our
case, this can be interpreted as follows: A haze-free image
cannot contain foggy regions in any part of it, while a hazy
image will contain some regions (but not all) showing fog.

Accordingly, we propose a model to predict if an image is
haze-free or hazy. To define such a model, we need to specify:

1. How do we represent instances within images?

2. How do we merge, or pool, instance-level predictions
into a single image prediction?

We answer below each of these questions.

2.2. Instance-level Representation

Regarding 1), in this work we use a pre-trained Convolu-
tional Neural Network to obtain a representation of each im-
age region. This is the standard choice for feature extrac-
tion in current Computer Vision. In our case, we use the
GoogleNet V3 architecture [14], initialized with pre-trained
weights from ImageNet. However, we do not employ the full
architecture end-to-end. Instead, we consider that a CNN fun-
damentally applies convolutions followed by pooling layers
that down-sample an input image iteratively until it reaches a
one-dimensional representation, that can be used for making
predictions. In our case, we do not arrive until the end of this
process, but rather run the forward pass of the CNN until the
receptive field of the last layer reaches a pre-specified spatial
resolution. Note also that we supply the model one image at
a time, instead of splitting it into patches. This is inspired by
Fully-Convolutional Networks (FCNs) for image segmenta-
tion [15]. Also, once we reach the end of the chopped net-
work, rather than upsampling again the output of this layer as
in an FCN, we simply apply a 1× 1 convolution to the result-
ing activation map, followed by a sigmoid function to obtain
a prediction on each image patch, as shown in Fig. 2. This en-
ables the generation of predictions for a set of image patches
independently. During training, patch labels are treated as a
latent variables, since in our setting there is no patch-level
information to learn from.

2.3. A Pooling Mechanism for Fog Detection

Once each patch pI of an image I has an associated prediction
P(pI), the next step is to combine them into a single image-
level prediction P(I). This is necessary in order to train with
weak labels (hazy/haze-free image), and it can be achieved by
a pooling operation . Several possible choices exist [16], each
of them modeling different situations:



1. Max-Pooling, image-level predictions are obtained as
the maximum response across every patch prediction:

P(I) = max
i

(P(piI)), i ∈ {1, ..., N}. (1)

This corresponds to the standard MIL assumption, and
it implies that as long as a hazy patch appears in the
scene, the entire image is considered as hazy.

2. Average-Pooling corresponds to an image considered
as hazy if more than 50% of its patches contain fog:

P(I) = 1

N

N∑
i=1

P(piI). (2)

This may be better suited for our problem, but the fixed
percentage of regions needed to consider an image as
hazy remains a too rigid boundary decision.

3. Shifted Average-Pooling corresponds to stating that an
image is predicted as hazy if more than (100 · k)% of
image patches contain fog:

P(I) = k +
1

N

N∑
i=1

P(piI). (3)

Parameter k is learned, giving the model the flexibility
to learn from data which is the appropriate proportion
of patches in order to consider an image as foggy.

4. Weighted Average-Pooling, in this case we can assign
a weight to each prediction:

P(I) = 1

N

N∑
i=1

wi · P(piI). (4)

The weights wi can be learned during training, and
they model the fact that some regions within an image
should have more relevance when making the decision
of whether the image is hazy or not. This agrees with
the idea that fog typically appears in the top part of the
scene, and hardly in the bottom. As such, this pool-
ing operation is expected to assign higher weights to
regions coming from this part of the training images.

5. Shifted Weighted Average-Pooling, a combination of
the previous two operations. This pooling type is meant
to model the fact that some regions are more represen-
tative than others to detect fog, but also that an image
should be declared as hazy if more than k% of image
patches contain fog:

P(I) = k +
1

N

N∑
i=1

wi · P(piI). (5)

In this case, both wi and k are learned from the data.

According to the above discussion, in this paper we select
Shifted Weighted Average-Pooling as the appropriate opera-
tion to combine decisions made by the classifier at patch level.

2.4. Model Optimization

The model is trained by standard back-propagation, after re-
sizing every image to 512 × 512 pixels. We chop the pre-
trained CNN in such a way that the last layer classifies patches
of size 114 × 114, with an overlap of 106 pixels. This al-
lows the model to see overlapped 61 × 61 patches from the
same image during training. The loss function driving the
optimization is binary cross-entropy, since the goal is to clas-
sify images into two different class. The weights of the pre-
trained CNN were fixed, and the Adam algorithm [17] was
used with a learning rate of 2e − 4 to fine-tune the last layer
for 30 epochs. Finally, we fine-tuned the entire model us-
ing early stopping with a patience of 15 epochs, until the loss
in a separate validation set did not decrease anymore. We
built the attention maps shown in the paper by upscaling the
patch predictions to the same size of the image, taking into
account the overlap between patches: values in overlap areas
are weighted averages, with weights coming from Gaussians
centered in the patches.

3. EXPERIMENTAL RESULTS

In order to train our model, we employed the two sets of 500
real-world hazy and haze-free images provided in [18]. We
supplemented this set of images with the NYU subset of the
D-Hazy dataset [19], which contains 1449 images on which
synthetic fog has been added thanks to the availability of a
depth map of the scene.

For testing our approach, an independent dataset was built
from a completely different source to ensure no overfitting
was occurring. We randomly selected a subset of 130 haze-
free images from the Places dataset [20], and sampled also
randomly a sub-set of similar size from the unannotated hazy
images sub-dataset in the RESIDE benchmark [21]. To pro-
vide comparison against other state-of-the-art image dehazing
that return an estimate of the fog density in the scene, we con-
sider the popular Dark Channel (DC) method [5], as well as
the method introduced in [18], which comprises both a met-
ric of fog density (FADE) and a complementary fog removal
technique based on it (DEFADE). For the Dark Channel tech-
nique, we considered mean intensity value of the estimated in-
verse transmission map as an indicator of the amount of haze
in an image. This consists of a value in [0, 1], being higher
when more foggy regions are detected in the image.

3.1. Qualitative Results

The proposed method learns to predict the presence of fog
from image-level ground-truth. Nevertheless, it can point to-
wards the regions within each image that led to each predic-
tion by means of attention maps. This has the advantage that
those regions are learn from the data, avoiding any manual
specification of the aspect of fog. In Fig. 3 we show some ex-
amples in foggy and fog-free images of such attention maps.
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Fig. 3. Top: (a), (b): Foggy images. (c): Fog-free image.
Bottom: Corresponding attention maps explaining the regions
within each image that triggered the decision of the model.

(a) (b) (c) (d)

Fig. 4. (a) Foggy image, (b) depth map estimated by the Dark
Channel method, (c) fog density map estimated by FADE, (d)
attention map generated by the proposed method.

Even if these maps do not contain the full-details of the scene,
they are enough to understand the behavior of the model.

To further verify the consistency of these attention maps,
we show in Fig. 4 a hazy image, the depth map predicted by
the Dark Channel (which is used to guide the enhancement
of the image, far-away pixels receive increased contrast), and
the fog density map returned by FADE. It can be seen that
both methods interpret the sky region as containing fog, due
to its bright appearance. This may potentially lead to typical
artifacts when dehazing images, since current methods try to
extract contrast from a region that has no underlying objects.
On the contrary, Fig (4d) shows how the proposed method can
learn from the training data that bright regions on the top of
the scene with no underlying texture can simply be part of the
sky, and not indicative of the presence of fog. In this case, the
image is declared as hazy by the method due to the presence
of fog on top of the trees in the right-most top region.
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Fig. 5. ROC curve for each considered method

FADE Dark Channel Proposed

Accuracy 0.8615 0.8577 0.8846
AUC 0.9183 0.9226 0.9502

Table 1. Fog Detection Performance Comparison between
our proposed Weakly-Supervised method and FADE, DC.

3.2. Quantitative Results

Using the fog-predictive score derived from the Dark Chan-
nel and the FADE metric, we can compare the performance in
terms of fog detection of the proposed method against these
two techniques. For this, we estimated the probability of
an image being considered haze-free/hazy in the independent
test set explained above. The Receiver Operating Characteris-
tic (ROC) curve resulting from each method is shown in Fig.
5. We also derived from them standard performance metrics:
accuracy and Area under the ROC curve (AUC). Performance
for each of the considered approaches is shown in Table 1.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a weakly-supervised method
for fog detection that learns to predict haze presence using
only image-level labels. The proposed model can detect fog
with great accuracy, and it produces attention maps indicating
the regions within an image that triggered its decision.

Predicting if an image contains fog is can be useful for
improving the adjustment of relevant parameters from ex-
isting image dehazing techniques, as well as to compare
among them. In the future, the attention maps produced by
the method will be optimized to capture more scene details,
enabling the development of a no-reference image dehazing
quality metric, which will be further extended to haze-like
artifacts and degradations typical of eye fundus images.
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