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Visual illusions expand our understanding of the visual
system by imposing constraints in the models in two
different ways: i) visual illusions for humans should
induce equivalent illusions in the model, and ii) illusions
synthesized from the model should be compelling for
human viewers too. These constraints are alternative
strategies to find good vision models. Following the first
research strategy, recent studies have shown that
artificial neural network architectures also have
human-like illusory percepts when stimulated with
classical hand-crafted stimuli designed to fool humans.
In this work we focus on the second (less explored)
strategy: we propose a framework to synthesize new
visual illusions using the optimization abilities of current
automatic differentiation techniques. The proposed
framework can be used with classical vision models as
well as with more recent artificial neural network
architectures. This framework, validated by
psychophysical experiments, can be used to study the
difference between a vision model and the actual
human perception and to optimize the vision model to
decrease this difference.

Introduction

The direct study of visual perception is an extremely
challenging open problem, and for this reason most
psychophysical research is performed on the study

of perceptual limits, thresholds, and errors that may
constrain the models of the system. A visual illusion
is a stimulus that induces a visual percept that is not
consistent with the physical description of the scene,
as given by linear sensors such as spectroradiometers,
rulers, protractors, and so on. An example can be seen
in Figure 1, which shows a canonical contrast illusion:
the gray squares have the exact same luminance (as a
measurement with a photometer could attest), but we
perceive the gray square over the white background
as being darker than the gray square over the black
background. Visual illusions can be understood as
scenes whose statistics do not correspond to the
ones that are typically found in natural images, so we
misinterpret them because of an (otherwise optimal)
codification strategy. In fact, many illusions have been
explained as by-products of optimal information
transmission or error minimization in statistically
unusual scenarios (Barlow, 1990; Laparra & Malo,
2015). Thus, visual illusions allow vision scientists
to devise and test new models in their search for a
better understanding of the rules that govern visual
perception.

Since 2018, a handful of works have observed that
artificial neural networks (ANN) trained in natural
images can also be “fooled” by visual illusions, in the
sense that their response to an input that induces an
illusion in humans is (qualitatively) the same as that
of humans, and therefore inconsistent with the actual
physical values of the stimulus. This has been shown for
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Figure 1. A canonical visual illusion (brightness contrast). The
squares have the same luminance, but they are perceived as
having different brightnesses.

illusions of very different type: motion (Watanabe et al.,
2018), brightness and color (Gomez-Villa et al., 2019),
and completion (Kim et al., 2019). However, despite the
fact that the inspiration for ANNs came from classical
models of biological visual neurons (Haykin, 2009) and
that ANNs can achieve a remarkable performance on a
variety of visual tasks, they fail to emulate basic human
perception abilities (Goodfellow et al., 2018; Geirhos
et al., 2019; Jacob et al., 2021; Bertalmío et al., 2020;
Gomez-Villa et al., 2020; Funke et al., 2021) and this
may cause some of their well-known and most relevant
problems.

Visual illusions constrain our knowledge of the visual
system in two different ways. First, given the stimuli
known to elicit illusory percepts in humans, vision
models should reproduce the polarity and intensity of
the illusions. Second, given different vision models, they
could be used to synthesize stimuli that lead to new
visual illusions.

The use of visual illusions to study vision models
according to the first approach, for instance as in
(Gomez-Villa et al., 2020), is inherently limited by the
way illusions are created; visual illusions are a really
scarce resource, they are handcrafted by psychologists
and artists in a one-by-one manner, and they need to
be tested using psychophysical studies before they are
accepted by the community (Shapiro & Todorovic,
2016). And this approach provides only one-half of the
picture: it does not tell us if stimuli designed to trick a
vision model can also produce an illusion on human
observers, which in terms of illusions would be the
other, complementary requisite for a good vision model.
Please notice that this is a different question to the well-
known problem of adversarial examples in machine
learning, where in very small perturbations in the input
images lead to the misclasification of those images that
does not occur to human observers (Goodfellow et al.,
2018).

The motivations of the present work are to address
the two previous points. We propose a framework
to create novel visual illusions by using generative
adversarial networks (GANs) that are optimized to
produce illusions with a maximum effect on a given
vision model (or ANN). These synthesized stimuli are

indeed able to fool human observers, as corroborated
by psychophysical tests. The flexibility of the proposed
approach allows for the incorporation of different
generative models, in particular here we explore the use
of GANs in two ways: i) pretrained GANs, where we
find a vision illusion by means of optimizing the latent
vector, and ii) a GAN that is trained during the process
of generation of illusions and, therefore, incorporates
the measurement of the illusion effect into the training
loss of the GAN. Moreover, the whole framework
can be transformed into a GAN itself if the vision
model is also trained during the process of generating
illusions to not to be tricked by the stimuli produced by
the generator. This strategy introduces a new way of
optimizing classic vision models, or to train ANNs to
better emulate human vision, that should be explored
in future work.

In conclusion, the contributions of this work are the
following:

• A novel method to generate visual illusions on
humans in which the images are synthesized to
produce a visual illusion on vision models. This
method is validated by psychophysical experiments.

• A new way to study the distance between a given
vision model and human perception by means of
the visual illusions generated to trick the vision
model.

• An extensive collection of synthetic visual illusions
produced by different choices of the elements of
the framework.

Our goal is not the production of the most
compelling illusion, which, of course, would depend on
having the perfect human vision model. Instead, we aim
at showing that the proposed method works, discussing
its implications, and showing how it may be used to
improve vision models.

Methods: A framework to generate
visual illusions

We pose the problem of synthesizing visual illusions
as the problem of optimizing a generative model to
create images that maximize a specific visual illusion
effect. There is a large variety of known types of
visual illusion (Shapiro & Todorovic, 2016); however,
for the sake of illustration in this work we focus on
a specific color/brightness illusion, one in which the
image contains two regions of exactly the same size and
radiance (from now on, the targets) that, influenced
by their respective surroundings (the inducers), are
perceived to be different by the observers. See Figure 1
for an example of a classical brightness illusion of this
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Figure 2. Overview of an instance of the proposed framework in which better illusions are generated by optimizing the latent vector.
In this mode, only one visual illusion is synthesized once the optimization is finished.

Figure 3. Overview of an instance of the proposed framework in which the generator itself is optimized to produce better visual
illusions. In this mode, once that the optimization of the generator is finished, any number of visual illusions can be generated.

sort. In the Discussion, we elaborate on how to use the
framework to generate other illusions (e.g., involving
textures and contours). In any case, our proposal is
based on measuring low-level subjective distances.
Therefore, the generation of illusions that rely on
high-level scene interpretation is out of the scope of
this work.

The framework that we propose is composed of two
main elements: one in charge of producing new images
(generator), and one that first processes these images
and then measures the visual illusion effect (illusion
meter). After the images are generated and before
they are processed by the illusion meter, there is an
intermediate step in which the targets are added to the
image. The intensity of the illusion as measured by the

illusion meter is then fed to the generator to optimize
the images produced, which are the inducers of the
illusion, for the sake of increasing the provoked effect.
Schemes of the proposed framework are depicted in
Figures 2 and 3, in where the difference relies on the
use of a fixed generator (Figure 2) or a trainable one
(Figure 3), these details are further discussed in the
Generator subsection.

The generator can be any generative model able to
synthesize new images; in this work we have only used
different GANs (Goodfellow et al., 2014), but we could
also use variational autoencoders (Blei et al., 2017) or
invertible flows (Kobyzev et al., 2020), for instance.
Depending on the chosen specific generative model,
there are different ways in which the generation of
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images can operate, a these details are further discussed
in the Generator subsection.

Illusion meter

The illusion meter is the most important element
of the proposed framework because it is in charge of
measuring the effect that the generated visual illusion
produces and therefore needs to approximate the
response of human observers to that illusion. It is
composed of two distinct parts, the first one is a vision
module that processes the image (so acting as a proxy
or replicant for human vision) and a second module to
measure the effect in the processed signal, as a distance
measure. These two modules are intimately related;
the choice for the vision module determines the type
of processed signal and hence the function used to
measure the vision illusion effect.

In what follows, we present the different choices of
vision module used in this work (that act as a proxy of
humans) and their corresponding meter functions used
to determine the intensity of the illusion effect.

Using classical vision models as the vision module
A natural choice for this module is the use of classical

vision models (CVM). The parameters of CVMs are
carefully tuned to reproduce human responses under
very specific conditions. An example of them is ODOG
(Blakeslee & McCourt, 1999), a model proposed to
reproduce brightness/lightness perception phenomena,
which is the one that we use in the experiments.

Whether a CVM reproduces a visual illusion or not
is decided in a qualitative way: After processing the
visual stimulus with the CVM, the signal in the targets
is usually plotted to determine if the visual illusion has
taken effect. Because we need to produce a metric, we
define as meter function the average of the differences
of intensity between the right and the left target. In
the ODOG case, given u, an N1 × N2 grayscale image
processed by the CVM and posed as a (N1N2) × 1
real vector (u ∈ RN1N2 ), and given IL and IR the set of
indexes corresponding to the locations of the left and
right target respectively, the meter function is defined
as:

fgray = 1
M

∑

i∈IR, j∈IL
(u(i) − u( j)) (1)

for M, the total number of pixels of each target.
Of course, ODOG is just one possible choice for this

module. The inducers (surrounds) may be explicitly
included in the signal as in the ODOG or in other
image-computable models (Otazu et al., 2010; Schütt
& Wichmann, 2017; Martinez-Garcia et al., 2018).

Alternatively, the surround may be parametrically
described as is in CIE color appearance models (Li
et al., 2000), where the change in the surround will
lead to different perceptions or corresponding color
pairs (Capilla et al., 2004; Fairchild, 2013). Finally,
the operation regime (or adaptation state) can be
nonparametrically determined as in statistical models
that try to equalize the set of responses (Twer &
MacLeod, 2001; Laparra et al., 2012; Laparra &
Malo, 2015). In each of these options, the intensity
of the illusion would be computed according to the
corresponding way to estimate differences between the
responses or color descriptions.

Using convolutional neural networks trained for imaging
tasks as the vision module

Following the empirical theory of vision (Kingdom,
2011), recent works (Watanabe et al., 2018; Gomez-Villa
et al., 2019) studied how convolutional neural networks
(CNNs) trained on databases of natural images to
perform low-level processing tasks can reproduce
the behavior of human perception for specific visual
illusions. Despite not being designed as human vision
models, CNNs offer the advantages over CVMs of
the continuous development of efficient libraries
for fast training through automatic differentiation
techniques. Automatic differentiation uses the sequence
of elementary arithmetic operations used by a computer
program to execute a computer program and apply
the chain rule repeatedly to these operations (to
automatically compute derivatives of arbitrary order).

We distinguish two main classes of CNNs among
the vast number of different types of CNNs trained
for imaging tasks. The first class comprises all the
CNNs that receive as an input an image and output
a processed version of that same image. Examples
of CNNs of this class are CNNs trained to perform
denoising, deblurring, restoration, inpainting, or color
correction, among others. The second class includes
those CNNs whose output is not a processed version of
the input image, but a signal of a different type, shape
or size. This includes CNNs trained for doing image
classification, object detection, segmentation, and
so on.

In this work, we have selected a CNN that performs
image restoration as an example for CNNs of the first
class and an image classification CNN in the case of the
second class. Each of them requires specific choices on
the meter function depending on their type of output
signal, which are detailed elsewhere in this article.

Using a CNN trained for image restoration as the vision
module

CNNs trained for image restoration are able to
reproduce human responses to some classical brightness
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visual illusions as shown in (Gomez-Villa et al., 2019).
This human-like behavior of CNNs trained for image
restoration makes sense because the enhancement
of the retinal signal may be one of the goals of the
lateral geniculate nucleus (Martinez-Otero et al., 2014).
Moreover, other human-like features (e.g., contrast
sensitivity) may emerge from this error minimization
goal (Gomez-Villa et al., 2020; Li et al., 2022).
Analogous to the CVM case, we can measure the effect
of the illusion by comparing the left and right targets
in the image processed by the CNN. In the case of a
grayscale N1 × N2 image u we can use the same meter
function fgray presented in Equation 1 for the CVM.

In the case of RGB images, we can define different
meter functions depending on the channel where we
want to measure the difference between targets, or
more complex color metrics that combine the different
channels. In particular, in this work we have focus
only in metrics based on producing differences in a
single color for each specific test performed. Let u be
the N1 × N2 × 3 image processed by the CNN. We
denote as ur, ug, and ub the three vectorized images
corresponding with the red, blue, and green channels.
Hence ub, ug, ub ∈ RN1N2 and given IL and IR the set of
indexes corresponding with the locations of the left
and right target, respectively, M the number of pixels
of each target, the channel-wise meter functions are
defined as:

fred = 1
M

∑

i∈IR, j∈IL
(ur(i) − ur( j)) , (2)

fgreen = 1
M

∑

i∈IR, j∈IL
(ug(i) − ug( j)) , (3)

fblue = 1
M

∑

i∈IR, j∈IL

(
ub(i) − ub( j)

)
. (4)

Additionally, we define a meter function to produce
perceptual differences in the yellow color, as
combination of the red and green channels:

fyellow = 1
M

∑

i∈IR, j∈IL
(ur(i) − ur( j)) + (ug(i) − ug( j)) .

(5)

Using a CNN trained for image classification as the vision
module

Using CNNs trained for image classification poses
the question of how to measure the illusion effect
when the signal processed is not an image anymore
but a vector of characteristics. Instead of measuring
the effect in the final output of the CNN, we work

with its internal representations (Bengio, 2009), whose
perceptual properties have already been shown (Gatys
et al., 2015; Zhang et al., 2018).

Nevertheless, how and where to measure these
internal representations is not a trivial choice. In this
work, we adapt the style loss proposed by (Gatys et
al., 2015) in the context of style transfer that has been
used later in several perceptual based approaches in
CNNs (Gatys et al., 2017). Defining Gram matrices as
in (Gatys et al., 2015), we denote as Gl

le f t and Gl
right the

Gram matrices corresponding with the locations of the
left and the right targets, respectively, in the lth layer.
The meter function is then defined as:

fstyle =
L−1∑

l=0

wl‖Gl
le f t − Gl

right‖2, (6)

where ‖ · ‖ is the Frobenius norm, L is the number
of layers used, and wl are weighting factors of the
contribution of each layer to the meter function.

Generator

The generator in our framework is a generative
model able to create new images where after the two
equal targets are superimposed they are perceived to
be different. For this purpose we have used different
instances of GANs (Goodfellow et al., 2014), which
in their most standard setting are composed of
two competing CNNs, namely, the generative and
discriminative network. This is not the only possible
choice, any other generative model such as variational
autoencoders (Blei et al., 2017) or invertible flows
(Kobyzev et al., 2020), could be used for instance.
Using GANs allows us to synthesize images in two
operating modes: a first one in which the latent space
of the trained GAN is explored to find the image
that maximizes the illusion effect, and a second one
in which a pretrained GAN is trained itself during
an optimization process to learn to produce better
illusions. In the following we detail the particulars of
these two approaches.

Fixed generative model: Optimization of the latent
vector

In this operation mode, our goal is to find a latent
vector z (see Figure 2) that generates an image in the
generator space that maximizes the illusion effect
as measured by the illusion meter. The GAN has
to be trained before outside the framework in some
determined dataset, thus, allowing us to use any
pretrained GAN in the literature.
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To optimize the vector z, a gradient-based optimizer
is run on the illusion meter output till convergence
(green block in Figure 2). The final output in this
approach is one visual illusion produced by the image
generated by the found latent vector z (orange block
Figure 2). This implies that, for every new visual
illusion, we have to run the optimization process from a
new starting point.

Trainable generative model: Learning to multi synthesize
multiple visual illusions

Instead of working with a fixed GAN, a second
possibility we explore is to start from a pretrained
GAN that is optimized to produce images that
provoke stronger visual illusions. This operating
mode is depicted in Figure 3, where the green block
indicates that it is the whole generator the one being
optimized.The loss of the GAN (�GAN) is modified to
incorporate the output from the illusion meter (�IM), a
scalar value that is the average intensity of the illusion
produced by the batch of images generated by the
GAN, resulting on a final loss function (�ffinal) that is
defined as

�FINAL = α�GAN + (1 − α) �IM, (7)

where α is an hyperparameter to balance the influence
of the two terms. Once the optimization of the whole
framework converges, the output from this approach
are in fact as many visual illusions as required, because
the generator has learned how to generate images that
produce visual illusions in the two targets that are
superposed in them.

Experiments

In this section we detail the different experiments we
have defined, to address the ability of our framework
to synthesize new visual illusions. Experiments 1 and
2 explore the two different approaches presented to
generate visual illusions. The first experiment involves
the case of finding visual illusions via optimization of
the latent vector from a fixed generator. The second
experiment focuses on training the generator to produce
better visual illusions. Finally, we chose this second

approach to perform a psychophysical experiment
to study whether the proposed framework is able to
produce visual illusions that fool human observers.
Moreover, in this experiment we compare the choice
of a classical vision model or a restoration CNN as
the vision modules of the illusion meter. The different
image datasets used in the experiments are described in
Table 1.

Experiment 1: Optimizing the latent vector in a
fixed generative model

In this experiment, we synthesize illusions by
optimizing the latent vector following the scheme
shown in Figure 2. Our choice for the generator is a
DCGAN (deep convolutional generative adversarial
network) (Radford et al., 2015) trained in the
Celeb-faces dataset (Experiment 1.a) or the Cats faces
64 × 64 dataset (Experiment 1.b) (one DCGAN for
each dataset, see Table 1 for their details). The DCGAN
architecture is composed of two different CNNs
modules, namely, the generative and the discriminative
ones. The generative network has four modules of
transposed convolution layers, batch normalization and
ReLu activation with a final transposed convolution
before the output tanh activation (with an output size
of 64 × 64 pixels). The discriminative network has five
modules of convolutional layers, batch normalization
and Leaky ReLu activation, except for the first and
last module that do not have a batch normalization
layer and in which the activation of the last layer is a
sigmoid. We trained the DCGAN for 80 epochs using
an Adam optimizer with learning rate of 0.0002. The
chosen vision module is a VGG16 network (Simonyan
& Zisserman, 2014) trained for classification on
Imagenet (Deng et al., 2009). The first four layers of this
network are fed to the meter function that calculates
the style loss (Gatys et al., 2015) in the target areas (see
Equation 6). Then, the latent vector is optimized using
the Adam optimizer with a learning rate of 0.0002 for
100 epochs (see Figure 2 for a scheme of this operating
mode).

Experiment 2: Optimizing the generative model

In this setup, as shown in Figure 3, we optimize
the generator module itself to synthesize images

Dataset # of images Size Type of images

Celeb-faces (Liu et al., 2015) 200K 178 × 218 Human faces
Cat-faces cat (0000) 15K 64 × 64 Cat faces
Places 2 (Krizhevsky, 2009) 10M 128 × 128 434 categories for scene recognition
DTD (Cimpoi et al., 2014) 5640 300 × 640 Describable textures

Table 1. Summary of the datasets used in the experiments.
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that produce visual illusions. This generator is a
DCGAN trained in two different datasets, the Airfield
category of the Places 2 dataset (Experiment 2.a) and
DTD dataset (Experiment 2.b) (see Table 1 for their
details). In Experiment 2.b, the generative network is
composed of two fully connected layers followed by
two convolutional layers. The fully connected layers
have 2048 and 256 × 8 × 8 hidden nodes respectively.
Both convolutional layers use 5 × 5 filter size with 128
and 1 channels, respectively. Before each convolutional
layer the input is 2 × 2 upscaled. ReLu activation
functions are used after each layer but the output
one in which a sigmoid activation function is applied.
The discriminator network is composed of three
convolutional layers and two fully connected layers.
The first convolutional layer uses 5 × 5 filter size and
the other two use 3 × 3 filter size with 128, 256, and 512
channels, respectively. The two fully connected layers
have 1,024 and 1 hidden nodes. After every layer the
activation function is a Leaky ReLu (α = 0.2) except for
the output layer that uses a sigmoid function. A max
pooling operation is applied after each convolutional
layer. This DCGAN from Experiment 2.b was modified
to perform experiments in higher resolutions in
Experiment 2.a (128 × 128). The generative CNN
now has additional convolutional layers (with same
dimensions as before) and 2 × 2 upscaling layers
while a convolution and max-pooling layers are added
to the discriminative CNN. For the vision module
in Experiment 2.a we use the deep denoising CNN
proposed by Zhang et al. (2017) for brightness and color
illusions while in Experiment 2b we use RestoreNet, a
shallow image restoration CNN used in (Gomez-Villa
et al., 2020), that were shown to accurate reproduce
human response in several brightness illusions. We
optimize the whole framework using an ADAM
optimizer on the DCGAN loss modified to include the
output from the chosen meter function. In the case of
grayscale illusions the meter function used is the one
defined in Equation (1), while for color illusions we
choose between Equations (2), (4), or (5) depending on
the color in which we want to perceive the differences
(respectively Equation red, blue, and yellow).

Experiment 3: Psychophysical experiment

The last experiment consists in performing
psychophysical tests to assess the ability of the proposed
framework to synthesize lightness visual illusions
that actually fool human observers. Additionally,
we compare in this experiment two different choices
in the vision module of the illusion meter, ODOG
(Blakeslee & McCourt, 1999), a classical vision model
for brightness perception, and the above explained
CNN RestoreNet (Gomez-Villa et al., 2020). These two
choices for the vision module are used with the same

meter function defined in Equation (1), hence allowing
us to compare both approaches fairly.

Observers were shown the lightness visual illusions
created by our approach—using squares as targets—and
they were asked to select the lighter square, having three
different options to choose from left, right, or center
(in case they were not able to perceive any difference).
The experiment was performed on a calibrated AOC
I2781FH LCD monitor. Observers were sitting at
50 cm of the screen so that the target grey squares
subtended 1.5° of visual angle. The trials were untimed.
Ten observers took part in the experiment. All of them
presented normal color vision and emmetropic (or
corrected to emmetropic) vision. None of them was
an author on this paper. Each of the observers viewed
each of the illusion once. We have considered the DTD
dataset (see Equation 1) for training the generator
module. For each choice of the vision module we have
obtained 50 output images (totalling 100 images) by
randomly selecting images that were considered to be
an illusion by the perception quantifier module from
batches of different iterations during the framework
training, to ensure the diversity of the candidates
generated. These images were randomized both in
terms of the methods and in terms of the side in which
the lighter square was expected to appear.

Results

In this section, we present the results of the different
experiments laid out in the previous section. We
follow the same structure as above, starting with
the images produced in Experiments 1 and 2, and
finally introducing the results of the psychophysical
experiment. A summary of the experiments performed
is displayed in Table 2.

Results for Experiment 1: Optimizing the latent
vector in a fixed generative model

Figure 4 shows the results of our approach when we
either train a DCGAN generator with human (top row)
or (bottom row) face images. The first column shows
a nonoptimized image (a sample from the generator),
from columns two to five an optimized version from
different seeds are presented. For each image, we have
also included the value of the loss function. This value
indicates how different are the gray targets according to
the illusion meter (bigger numbers stands for greater
differences). Let us note that, in this case, as we are
using the style losses, we are not allowed to specify a
polarity in the visual illusion (for instance, that the
left patch is perceived brighter than the right one). In
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Label Figure Generator Dataset Vision module Meter function

Experiment 1a Figure 4, first row Optimization of the latent vector Celeb VGG16 Equation 6
Experiment 1b Figure 4, second row Optimization of the latent vector Cat-faces 64x64 VGG16 Equation 6
Experiment 2a Figure 5, first row Optimization of a DCGAN Places2: Airplanes Denoising CNN Equations (1), (2), (3), (5)
Experiment 2b Figure 5, second row Optimization of a DCGAN DTD RestoreNet Equations (1), (2), (3), (5)
Experiment 3 Figure 6, left column Optimization of a DCGAN DTD ODOG Equation (1)
Experiment 3 Figure 6, right column Optimization of a DCGAN DTD RestoreNet Equation (1)

Table 2. Table summary of the experiments performed. The vision modules used are ODOG (Blakeslee & McCourt, 1999), RestoreNet
(Gomez-Villa et al., 2020), VGG16 (Simonyan & Zisserman, 2014), and the denoising CNN from Zhang et al. (2017).

Figure 4. Experimenta 1a and 1b. Example images for visual illusions obtained at size 64x64 using the latent vector optimization
approach. The first row is trained with the Celeb-faces dataset (human faces) and the second one is trained with the Cats faces 64 ×
64 dataset.

this case, our condition is that a different perception
should be perceived in each target (so maximizing
Equation (6)). This difference in perception between
the patches is clearly present in all the examples of the
figure (columns two to five).

By looking at the previous figure, we can see that
the generator has the clear tendency to surround one
target with a dark region and the other one with a
lighter region (therefore tending toward the brightness
contrast illusion). This said, as we are constraining the
generator to obtain images resembling either human or
cat faces, those surrounding regions will be objects that
do exist in the faces (e.g., hair in human faces or a black
hair region in cat faces).

Results for Experiment 2: Optimizing the
generative model

Results for Experiments 2.a and 2.b are shown on
the first and second rows, respectively, of Figure 5. In
the first row, we synthesize images of higher resolution
(128 × 128) considering the airplane category of the
Places dataset. The second row show images generated
from the DTD dataset (32 × 32). The first column

presents an intensity illusion and from the second to the
fourth columns are color contrast illusions obtained by
starting either in a red, blue, or yellow target color. We
can see that, in all the cases, we are able to synthesize
visual illusions, showing that our framework is not tied
to any particular region of the color space. Going into
greater detail, in the second column we specified in the
meter function than the right target should be perceived
redder than the left one (maximizing Equation (2)).
Similarly, in the third column, we specified that the
right target should be perceived bluer (maximizing
Equation (4)), and in the fourth column that the
right target should be perceived yellower (maximizing
Equation (5)).

Results for Experiment 3: Psychophysical
experiment

Six example images that were shown to the observers
are shown in Figure 6; the three first images were
produced using ODOG as the vision module and the
last three images were synthesized with RestoreNet as
the vision module. A first interpretation of the results
is presented in Table 3, where the average selection of
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Figure 5. Experiments 2a and 2b. Results for lightness illusions using different training datasets and target shapes, and considering
RestoreNet as the vision model. In all the cases the target on the right was selected to be brighter than the one on the left. Results for
the lightness and color illusions using Airplanes (first row) and DTD (second row) as the training datasets for the background images
and different target colors. From left to right, our cost imposed the perception of the right target to be lighter, redder, bluer, or
yellower.

Figure 6. Experiment 3. Examples of lightness illusions generated using a classical visual model (ODOG) (left) and an image to image
restoration CNN (RestoreNet) (right), with square targets and the DTD dataset. The square selected to be the one that should be
perceived brighter was randomized in these images.

Opposite illusion No illusion Correct illusion

All 0.08 0.23 0.70
ODOG 0.07 0.22 0.71
RestoreNet 0.08 0.24 0.68

Table 3. Results of the psychophysical experiment (Experiment
3) as average of the selected square.

each option for the full set, as well as for each vision
module, is shown. The average is performed on the
10 different observers of the experiment. As we can
see, in a large majority of the cases (approximately

70%) the human observers perceive the illusion that
was generated by the vision module. To obtain a more
statistically significant result, we have also recast the
experiment in terms of the Thurstone Case V Law
of Comparative Judgment (Thurstone, 1927). To
this end, we have partitioned the answers into two
classes, as having the generated illusion or not having
it. The latter category considers both the cases where
an observer has not seen any illusion and where an
observer has selected the opposite direction for the
illusion. Results for this analysis (Experiment 3) are
shown in Figures 9 and 3. As we can see, the generated
illusion is perceived with statistical significance in all the
cases.
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Figure 7. Statistical analysis for the results of the psychophysical experiment (Table 3).

Figure 8. Statistical analysis for the results of the psychophysical experiment when results are partitioned in just two classes either
obtaining or not obtaining the illusion.
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Figure 9. Thurstone Case V Results for Experiment 3. We can see that the illusions are seen with statistical significance in all the cases.

Results for Experiment 3: Psychophysical
Experiment

Six example images that were shown to the observers
are shown in Figure 6, the three first images were
produced using ODOG as the vision module while the
last three images were synthesized with RestoreNet as
the vision module. A first interpretation of the results is
presented in Table 3, where the average selection of each
option for the full set, as well as for each vision module,
is shown. As we can see, in a large majority of the cases
(approximately 70%), the human observers perceive
the illusion that was generated by the vision module.
The results of this table can be further interpreted in
Figure 7, where we plot the individual results for the 10
observers (blue crosses), as well as the average (green
star), and the 95% confidence intervals (orange lines).
The confidence intervals have been computed in terms
of the Student t’s distribution approximation. In the top
Figure, we can see the results for where both methods
are considering, and in the bottom part, we present
the results for both the ODOG and RestoreNet cases.
Looking at the figures, we can clearly see that there is
a statistical significance in our results, and that, when
comparing the figures, for ODOG and RestoreNET, the
former seems to surpass the latter.

To have a more detailed result looking at whether
our methods obtain/does not obtain the illusion, we
have also partitioned the answers into two classes, as
having the generated illusion or not having it. The latter
category considers both the cases where an observer
has not seen any illusion and where an observer has
selected the opposite direction for the illusion. Figure 8
presents the same structure from the previous Figure.
We can clearly see that our results are statistically
significant, and that for almost all observers in all of
the cases, our method obtains the desired effect. We
have also recasted this partitioned case in terms of the
Thurstone Case V Law of Comparative Judgement
(Thurstone, 1927), because it is a standard approach to
look at pairwise comparison experiments, and in this
case, our experiments is one. Results for this analysis
(Experiment 3) are shown in Figure 9 and Table 3. As

we can see, this analysis also confirms that the generated
illusion is perceived with statistical significance in all the
cases; the error bars display 95% confidence intervals.

We further analyzed whether our results can
be explained by differences in the contrast level
surrounding our patches. For that, we removed those
images in which the contrast of one of the channels
with respect to its surrounds was smaller than 2% or
5%, and we computed at two different scales, a 20 × 20
and a 30 × 30 window surrounding our patch. For all
the analyzed cases, the results presented the same trend
detailed elsewhere in this article.

Discussion

Here we discuss the critical elements of the
framework, the opportunities for theory-driven
experiments to improve vision models, and for a
better understanding of the role of the statistics of the
environment in visual illusions.

Limitations of the elements of the framework

Generation strategy
In Experiments 1 and 2, we have shown results

obtained using the two different generating modes of
the proposed framework. When we optimize a latent
vector as generation strategy, we have the advantages
of a fixed network (generator): there is no need to
adjust, optimize or tune any parameter in the approach,
just the components of z and there is no risk to fall
in common optimization issues of generative models
such as mode collapse (when the generator starts
producing the same output or small set of outputs and
the discriminator learns to reject that output). However,
we face drawbacks such as the need for the generator
to be trained to learn well enough the natural image
manifold. This setting is restricted to the type of images
from the training dataset; hence, it can not be modified
in order to properly produce targets inside the image.
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Figure 10. Effect of the influence of the hyperparameter α in the conditions of Experiment 3.

Finally, only a single visual illusion is produced for each
optimization process we run.

In contrast, when we train the generator, after the
optimization it will be capable of generating multiple
visual illusions just sampling the created manifold. In
this setting, it will be possible to create the images with
targets if we impose a condition over the generator, for
instance following an approach similar to Pix2Pix (Isola
et al., 2017). The limitations of this approach include
the usual generative models optimization problems,
such as mode collapse and the tune procedure of the
weights of each loss; that is, there is a fine tuning for
balancing the value we give to the influence of the
strength of the illusion and the generation loss that
forces to produce a natural image as background (the
hyperparameter α in Equation (7)). As observed in our
experiments, without this fine tuning, the visual illusions
generated by this approach tend to images resembling
a canonical visual illusion such as the one showed in
Figure 1. In Figure 10, we show an example of how
the value of α influences the appearance of the images
generated. All the other choices in the framework
correspond to the ones used in Experiment 3 with
RestoreNet as vision module (see Table 2). When α = 0,
the optimization of the generator is only driven by the
generation of visual illusions, producing an images that
does not resemble the images in the dataset. When the
value of α increases, the quality of the produced images
improves until reaching a point in where the effect of
the illusion is not perceived anymore. We have found
that α = 10−3 is a good compromise between these two
extreme cases.

Finally, in terms of computational cost, this second
approach requires a bigger effort in terms of time and
resources due to the need to train the generator of
images to produce better visual illusions. Optimizing
just the latent vector is much faster and allows to use
complex models that have been already trained.

Measuring the illusion
When we are synthesizing visual illusions, there

is a fundamental issue that is not solved in vision

science, which is how to quantitatively measure
whether an image indeed is producing a visual illusions.
We have posed this problem in two stages in the
illusion meter: first, we simulate human perception
(hence, also the distortion of the reality) with the
vision module, secondly, we define meter functions
that should objectively measure the processed signal
(true tristimulus values). How to compute these
measurements remains an issue as shown in Figure 11,
where we can see three different examples of image
profiles over a line crossing the targets that have
been processed with different choices of the vision
module (Figure 11b) and the profile of the original
image (Figure 11a). In this classical visual illusion,
human observers perceive the square over the black
background to be lighter than the square over the white
background. Where should we quantify the perceived
brightness is an important question to consider. One
approach could be to measure the value of the central
pixel of each square, but this will not work for the
outputs presented in Figures 11c and 11d, that, however,
are correctly reproducing the illusion as observed in
the profiles. Another possibility would be to compare
the average values in the target regions, although this
approach will not necessarily work again for these
two models. This choice is, therefore, an important
decision intimately connected with our vision module
choice.

If standard distances are used in the illusion meter,
the proposed technique can be seen just as a way
to obtain different versions of preexisting illusions.
This is a limitation imposed by the illusion meter
(e.g., restricting the kind of generated illusion to the
feature taken into account by the measure). However,
the automatic generation of different versions of an
illusion is still interesting for two reasons: 1) it gives
the researcher the opportunity to check the influence
of diverse parameters through the cost function, and
2) looking for the best inductors with spatial structure
remains an open issue (masking by surround texture)
and could be explored with this framework. See the
discussion on using the framework with more general
illusions elsewhere in this article.
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Figure 11. A classical visual illusion (brightness contrast). The squares have the same gray value, but they are perceived as being
different. In (a) is depicted a plot of the values of the image over the blue line. Subfigures (b), (c) and (d) show sample output images
from different vision models or same vision model using different parameters. This figure was created for visualization purposes (it
was not explicitly generated from a vision model); nevertheless, any brightness vision model such as Blakeslee and McCourt (1999)
present these kind of plots.

Synthesis of illusions as a tool to decide
between models

The proposed framework for illusion synthesis could
also be seen as a contribution to the literature on
theory-driven methods to decide between competing
vision models.

In visual psychophysics, theory-driven experiments
imply i) the synthesis of stimuli according to the
models under consideration, and ii) the psychophysical
judgements of the stimuli done by human observers.
The judgments by humans determine which model
better describes visual function. In this context,
the eventual complications of the synthesis are
just a computational issue: the expensive part is
the psychophysical test. Therefore, the (cheaper)
computational effort in stimulus design is key to
minimize the (more expensive) validation through
measurements. These considerations led to a series
of techniques for theory-driven stimulus generation
(Wang & Simoncelli, 2008; DiMattina & Zhang, 2013;
DiMattina, 2016). For instance, (Wang & Simoncelli,
2008) proposed that one can rule out certain vision
model A (or distance A) in front of a reference model
B (or reference distance B) by generating maximally
distant images according to model A while having
a fixed distance for model B. The observers decide
which of the model-generated pairs is actually more
different, thus indicating which distance A or B is more
correct. This maximum differentiation procedure has
been used to perceptually decide the parameters of
divisive normalization models (Malo & Simoncelli,
2015). The iterative procedure to generate the stimuli
in the original maximum differentiation has been

simplified by second-order approximations of the
distance (Martinez-Garcia et al., 2018), or by selecting
pairs of stimuli from preexisting databases instead of
being explicitly synthesized (Ma et al., 2020).

In this stimuli–synthesis context, the current deep
learning artificial neural networks to model biological
vision (Kriegeskorte, 2015; Yamins & DiCarlo, 2016;
Majaj & Pelli, 2018; Kietzmann et al., 2019) has
brought an interest in generating stimuli to falsify these
architectures (Berardino et al., 2017; Geirhos et al.,
2019; Martinez et al., 2019; Fruend, 2020). But, more
important, from the experimental point of view, deep
generative models excel in the synthesis of realistic
natural images (Goodfellow et al., 2014): they implicitly
capture the properties of the manifold of natural stimuli
and one can control the properties of the manifold by
restricting the images in the training set. Therefore, deep
generative models seem the appropriate candidate to
sample stimuli from. Recent research uses the stimulus
optimization ability of deep learning to synthesize
tests that allow the discrimination between competing
models. For instance, given two models A and B (Golan
et al., 2020) generate controversial stimuli in the sense
that they belong to different classes for the classification
model A, while being the same class for model B.
Similar to maximum differentiation, the observers
decide which of the models leads to (perceptually)
more meaningful stimuli/class distribution. On the
same vein Fruend (2020) uses a two-stage (synthesis +
experimental decision) process. First, he uses GANs to
embed targets into natural scenes and the models that fit
the visibility of such targets are used to synthesize new
model-specific stimuli. Then, observers decide between
the models assessing between the model-specific stimuli.
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In the case of the proposed framework for illusion
synthesis, given two competing vision models (or
subjective distances), our method will synthesize visual
illusions by generating backgrounds that maximize the
subjective distance between physically identical tests. In
this context, the best model will be the one leading to the
more compelling illusion, a decision that can be reduced
to simple 2 alternative forced choice experiments. As
a consequence, the psychophysical results reported
above to validate the procedure (Experiment 3) can also
be seen as a way to test which model explains better
human behavior. The criterion is how often the human
observers are fooled by the illusions generated by each
model. In this specific example, the difference between
the considered models (the classical vision model and
the CNN) is small. However, note that the proposed
framework is generic and it can be applied to any pair
of models as the maximum differentiation method cited
elsewhere in this article.

More generally, psychophysical decisions on illusions
similar to Experiment 3 could be used to fit the free
parameters of a vision model. In this case, the best
parameter is the one that leads to higher alignment
between the perceptual distance (illusion strength)
and human opinion. Nevertheless, to make a more
conclusive comparison between two models (say A
and B), one should impose the selection of surrounds
that maximize the distance for model A while keeping
it constant for model B, as it is done in maximum
differentiation (Wang & Simoncelli, 2008; Malo &
Simoncelli, 2015; Ma et al., 2020) and controversial
stimuli (Golan et al., 2020). We did not do this in our
proof of concept (Experiment 3), and hence the use of
the proposed framework to this end is left as a matter
for future research.

Synthesis of illusions in different statistical
environments

Another advantage of the proposed framework is
that it allows systematic restrictions of the dataset
that determines the surrounds. This can clarify the
relation between the statistics of the environment and
the strength/direction of the visual illusions. Note that
mismatch between the statistics of the environment and
the target has been largely considered as the origin of
the illusions (Barlow, 1990; Laparra & Malo, 2015).
Recently, the ideas of Purves et al. (2014) on the relative
scales of brightness learned from the experience in
certain environments have been used in practice to
synthesize illusions via normalizing flows (Hirsch & Tal,
2020). These approaches may benefit from the proposed
method by exploring the interaction between the class
of illusions that can be generated and the restrictions
applied to the manifold of admissible backgrounds.

Training the vision module within the
framework

Although not explored in this work, the proposed
framework could be modified to use the output from
the meter function to optimize the vision module during
the main process of generation of visual illusions. In the
case of a classical vision model this opens the possibility
of an automatic adjustment of its parameters, that
are typically manually adjusted. When using CNNs,
this training could be seen as a way to impose human
perceptual properties in these architectures with the aim
of solving some of the errors that could be originated
by their differences with respect to humans. This topic
very compelling and should be explored deeply in future
work.

Using the framework with more general
illusions

The consideration of spatial information in the
illusion meter would lead to effects beyond brightness
and color induction. For instance, it is known the
perceived frequency, orientation and contrast of a
spatial pattern depends on the texture of the surround
and the background (Blakemore et al., 1970; Tolhurst
& Thompson, 1975; Foley, 1994; Ellemberg et al.,
1998). These effects are described by the interactions
between the responses of wavelet-like filter banks
(Watson & Solomon, 1997; Cavanaugh et al. 2002a, b).
Models of these interactions have been used to generate
maximally visible distortions in certain backgrounds
(Martinez-Garcia et al., 2018). If these models are used
in the illusion meter, an optimization procedure similar
to maximum differentiation may be used to look for the
background/surround that induces the greatest changes
in spatial the perception of the targets.

Similar models based on oriented filters at different
scales have been shown to explain contour illusions
such as Kanizsa-type subjective figures, phase-induced
subjective contours, the Zöllner illusion, and the
Müller–Lyer illusion (Rodriguez-Sanchez et al. 1999,
2000), so it is easy to include them in the proposed
framework to assess the strength of the contours when
the targets are superimposed to the background.

Finally, artificial neural models have been shown to
perceive illusory contours (Pang et al., 2021; Kim et al.,
2021), so they could also be used and even trained in
the illusion meter module of the framework.

Conclusions

We have proposed a framework for the synthesis
of visual illusions through deep generative models

Downloaded from jov.arvojournals.org on 05/31/2023



Journal of Vision (2022) 22(8):2, 1–18 Gomez-Villa et al. 15

and the maximization of the perceptual difference
between the targets embedded in the background.
Psychophysical experiments validate the correctness of
the framework by showing that the stimuli synthesized
assuming different vision models do induce illusions in
human viewers. This means that the proposed synthesis
method, based on distance maximization, works. Of
course, the intensity of the illusions depends on the
correctness/generality of the considered models, but
the optimization of the models to get more compelling
illusions is a matter for future research. Here we
explored specific options for the basic building blocks
of the framework (the background generator and the
illusion meter), and in every case we showed illustrative
results for these different options. A systematic analysis
of these different options is also a matter for future
research.

Finally, future work should address extension of this
work to other types of illusions. For example, we can
consider the works of Watanabe et al. (2018); Kim et al.
(2019), where they studied how CNNs replicate motion
or completion illusions respectively. Both of these
CNNs seem to be good candidates for vision modules.

Keywords: visual illusions, synthesis of stimuli,
visual response models, image distortion metrics, deep
generative models, generative adversarial networks
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