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Issues with Common Assumptions about the Camera Pipeline and Their Impact
in HDR Imaging from Multiple Exposures\ast 
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Abstract. Multiple-exposure approaches for high dynamic range (HDR) image generation share a set of building
assumptions: that color channels are independent and that the camera response function (CRF)
remains constant while changing the exposure. The first contribution of this paper is to highlight
how these assumptions, which were correct for film photography, do not hold in general for digital
cameras. As a consequence, results of multiexposure HDR methods are less accurate, and when tone-
mapped they often present problems like hue shifts and color artifacts. The second contribution is
to propose a method to stabilize the CRF while coupling all color channels, which can be applied
to both static and dynamic scenes, and yield artifact-free results that are more accurate than those
obtained with state-of-the-art methods according to several image metrics.
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1. Introduction. The dynamic range of light intensities in a natural scene, defined as the
ratio between the highest and the lowest luminance values, may easily span five orders of
magnitude or more. While in most common situations the light coming from a scene is of
high dynamic range (HDR), the vast majority of sensors (and displays) are of low dynamic
range (LDR). The net result is that standard cameras are only able to capture different
intervals of the luminance range at different exposure times; in particular, bright areas are
properly captured using short exposure times, while dark areas are better captured using
longer exposure times.

To overcome this limitation, Mann and Picard, in their seminal work [24], introduced the
idea of creating an HDR picture of a static scene by combining a set of LDR images taken
with different exposure times, proposing a parametric method to estimate the camera response
function (CRF) that transforms the linear data into nonlinear form. This was soon followed
by other very influential approaches for the problem that differ in the way the constant CRF
is estimated, e.g., Debevec and Malik [5]; Mitsunaga and Nayar [28]; and Tsin, Ramesh,
and Kanade [35]. Later works tackled more general cases, like dynamic scenes with camera
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and/or object motion [23, 14, 15, 10, 13, 29, 18] or video [34, 16, 11], and it can be said that
multiexposure HDR creation is an ongoing research topic [27, 4, 21, 31].

Multiple-exposure approaches that use nonlinear input pictures assume the following image
formation model:

(1.1) J(p) = f (E(p)\Delta t) ,

where \Delta t is the exposure time, p is a pixel location, E(p) is the scene radiance value at p, f
is a nonlinear transform usually denoted as the CRF, and J(p) is the resulting LDR image
value, corresponding to one color channel. Analogous expressions hold for each of the three
color channels, for which the function f might be different. In a static scene the values E(p)
remain constant, so taking a stack of N pictures by varying the exposure times gives us for
each image

(1.2) Ji(p) = f (E(p)\Delta ti) , i = 1, . . . , N,

where the subindex i denotes the different exposures and it is also assumed that the function
f remains constant as \Delta ti changes. Multiple-exposure methods estimate the inverse g of the
CRF f , g \equiv f - 1, apply it to the image values Ji(p), and then divide by the exposure time
\Delta ti so as to obtain one estimate of E(p) for each image i in the stack:

(1.3)
g(Ji(p))

\Delta ti
= E(p), g \equiv f - 1.

These N estimates of E(p) are then averaged in order to provide the final output, the HDR
value for pixel p.

We can see then how most multiple-exposure approaches share a set of building assump-
tions for the camera capture:

1. Different color channels are independent.
2. The camera response remains constant while changing the exposure.

The contributions of this paper are, first, to highlight how these assumptions do not hold
in general for digital cameras, so multiexposure HDR methods based on them often produce
HDR pictures that when tone-mapped show hue shifts, color artifacts, or contrast problems.
As a second contribution we propose a method to improve multiple-exposure combination,
compensating for the violations of assumptions (1) and (2) above and allowing us to obtain
more precise HDR images from nonlinear LDR inputs, both for static and for dynamic scenes,
that when tone-mapped show no signs of spatiotemporal artifacts of any kind.

2. The response function of digital cameras. The assumptions that different color chan-
nels are independent and that the camera response remains constant while changing the ex-
posure are correct in the case of film photography, but they are not an accurate model of how
digital cameras work. Digital cameras follow a typical camera color processing pipeline [3]
that can be expressed as

(2.1)

\left[  RG
B

\right]  
out

=

\left(  A \cdot 

\left[  RG
B

\right]  
in

\right)  \gamma 

,
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Figure 1. The LuxoDoubleChecker scene from [7] (a) on top the LDR image sequence and on the bottom
the final HDR image (tone-mapped). Plots computed for points in the gray squares in the dark color checker
(red squares) using (b) the RAW values and (c) the linearized JPEG values. While in both cases the plots
should theoretically be a single line of slope one, it can be seen that in the linearized JPEG case the points are
more dispersed than in the RAW case.

where [R,G,B]tin is the sensor triplet (usually in 12 or 14 bits); [R,G,B]tout is the pixel value
at the end of the pipeline (in 8 bits per channel); A is a 3\times 3 matrix that combines the different
color channels taking into account white balance, color encoding, color characterization, and
a gain value; and \gamma is a value, typically between 1/1.8 and 1/3, performing gamma correction
(notice that we omit demosaicking, denoising, compression, etc.; for a complete explanation
of these pipeline processes, see [2]).

We claim that, contrary to what has been assumed in the multiexposure literature,
1. the three channels R, G, B are not independent because the matrix A is not diagonal,

as it incorporates color processing steps, like color characterization, that involve all
channels;

2. the CRF changes from one picture to the next in the multiexposure scenario. The
camera automatically modifies the \gamma value and the A matrix, implying that the non-
linear transform f in (1.2) is not constant and therefore that there is no CRF to speak
of because the camera response has changed from image to image.

The next example illustrates the latter point. Figure 1(a) reproduces a few individual
exposures (top) used by M. Fairchild in [7] to create the LuxoDoubleChecker HDR image
(bottom). The images were captured in RAW format alongside the nonlinearly corrected
counterparts. For a stack of N RAW pictures Ri, the image formation model is

(2.2) Ri(p) = E(p)\Delta ti, i = 1, . . . , N,

and this equation is valid for the range of luminances for which the sensor operates in the
linear range, above the black pedestal and below saturation. This is why, when creating an
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HDR image through multiple-exposure combination, professional users prefer to take RAW
pictures; in this way, there is no need to estimate and invert the CRF that is applied to
the nonlinearly modified pictures stored in 8 bits per channel form; this also involves camera
manufacturers. Applying the logarithm to both sides of (2.2) and leaving only the exposure
term on the right, we get

(2.3) log

\biggl( 
Ri(p)

\Delta ti

\biggr) 
= log(E(p)), i = 1, . . . , N ;

therefore, if we plot log( Ri
\Delta ti

) versus log(E), we should get a single line of slope one. This is
indeed approximately the case, as we can see in Figure 1(b). In principle the same could be
said in the nonlinear case when applying the logarithm to (1.3):

(2.4) log

\biggl( 
g(Ji(p))

\Delta ti

\biggr) 
= log(E(p)), i = 1, . . . , N.

This is so because if we plot log(g(Ji)\Delta ti
) versus log(E), we should also get a single line of slope

one. In practice, though, this does not always happen, as Figure 1(c) shows. The fact that

the values for log(g(Ji)\Delta ti
) are rather spread implies that it was wrong to assume that f (as

well as its inverse g) was constant, and therefore the conclusion is that the camera must have
modified the values for some of its parameters, A, \gamma , when the exposure time \Delta ti is changed.

To support this claim and highlight how generalized this camera behavior is, we have
performed tests on multiple-exposure sequences coming from four different camera models,
where during capture, only the exposure time changed, and with results recorded both in
linear (RAW) and in nonlinear (JPEG) form. Having the same picture in these two versions
allows us to estimate the values for \gamma and the matrix A with (2.1), using the RAW data for
the [R,G,B]tin values and the JPEG data for the [R,G,B]tout values.

In Figure 2, columns 1--4 correspond to different sequences (shown in rows 1--4 of Figure
3) taken with different cameras, while the fifth column corresponds to the average over the
105-image HDR Survey database [7]. The first row of Figure 2 plots, for different sequences,
a value that measures how far the matrix A of each image in the sequence departs from
being diagonal: We have chosen for this to compute the average of the absolute value of the
nondiagonal elements of A normalized by its maximum value. The fact that these values
are consistently above 0.1 shows that the three channels R, G, B are not independent. The
second row of Figure 2 plots the value of 1/\gamma for each image in the sequence, which is ordered
from shortest to longest exposure time. We can see that, for all sequences, as the exposure
time increases, the value of 1/\gamma also increases, and the change is quite substantial. The third
row of Figure 2 plots the difference between the matrix A of each image in the sequence with
respect to the matrix A of the middle image in the stack.1 Again we see that the cameras are
changing A from one exposure to the next.

In Figure 3, each row corresponds to a camera model from a different camera maker. The
columns show tone-mapped results of the HDR pictures obtained with different multiexpo-
sure combination methods: from the RAW pictures (first column), from the JPEG pictures

1We compute this difference as the Frobenius norm \| \cdot \| F of the difference between the matrices.



CAMERA PIPELINE IMPACT ON MULTIPLE-EXPOSURE HDR 1631

Figure 2. Columns 1--4 correspond to different sequences taken with different cameras (Nikon, Pentax,
Panasonic, Canon), shown in rows 1--4 of Figure 3. The last column corresponds to the average over the
105-image HDR Survey database [7]. The x-axes correspond to the number of exposure images (denoted by i),
and the y-axes correspond to the corresponding error. The first row shows the distance error between the color
correction matrix Ai and a diagonal one Id, the second row plots the estimated 1/\gamma i for each image, and the last
row presents the difference error between the Aref matrix of the middle exposure and the rest of the matrices
Ai. Note that the A and \gamma values correspond to the model in (2.1).

using the multiple-exposure combination methods of Debevec and Malik [5] (column 2), and
Mitsunaga and Nayar [28] (column 3), from Lee et al. [18] (column 4), and from the method
proposed in this paper (last column). We can see that the previous multiple-exposure meth-
ods that take the nonlinear JPEG inputs produce results which have visible problems, like
hue shifts and color artifacts; to underline that these artifacts are not due to the particu-
lar tone-mapping method used, each row employs a different, state-of-the-art tone-mapping
algorithm.

In the next section we will introduce a method that, considering all three channels simul-
taneously, removes the fluctuations in \gamma and A, effectively making the CRF constant for the
whole sequence. Its results for the above sequences are shown in the last column of Figure 3.

3. Proposed method to make the CRF constant. A schematic of our method is presented
in Figure 4. The input is a set of N nonlinear LDR images acquired under different exposure
times, and we select P of them as reference images. Our algorithm consists of two steps:

\bullet Step 1. For each nonlinear reference image Irefk , all images in the stack are color-
matched and linearized with respect to Irefk and then averaged to produce an inter-
mediate HDR picture HDRrefk .

\bullet Step 2. The P intermediate HDR images HDRrefk for k = 1, . . . , P are combined to
produce the final HDR output.

We have made the code for our implementation available at http://ip4ec.upf.edu/HDR
code. Let us now see in detail the steps of the proposed method.

http://ip4ec.upf.edu/HDR_code
http://ip4ec.upf.edu/HDR_code
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Figure 3. From left to right: tone-mapped HDR result obtained from RAW pictures (i.e., ground truth) (first
column) and tone-mapped HDR results obtained with the multiple-exposure combination methods of Debevec
and Malik [5] (column 2), Mitsunaga and Nayar [28] (column 3), Lee et al. [18] (column 4), and our proposed
approach (last column). Cameras used: Nikon (first row, from the HDR Survey [7]), Pentax (second row),
Panasonic (third row), Canon (fourth row). Tone-mapping methods used: Drago et al. [6] (row 1); Mai et al.
[22] (row 2); Mantiuk, Daly, and Kerofsky [25] (row 3); and Ferradans et al. [8] (row 4).

Figure 4. Diagram of our method. The input is a set of N nonlinear images acquired under different
exposure times. We select P reference images; for each nonlinear reference image Irefk , all images in the
stack are color-matched and linearized with respect to Irefk and then averaged to produce an intermediate HDR
picture HDRrefk . Then these P intermediate HDR pictures are averaged to produce the final output.

3.1. Step 1. Inspired by the digital camera color processing pipeline in (2.1) and the
color stabilization model proposed in [36], we consider the color-matching process as key to
our method because it is the one that removes fluctuations in \gamma and A and in practice turns
the CRF constant for all images in the multiexposure sequence. The idea from the color
stabilization model [36] is to obtain a 3\times 3 matrix Hsrc and two \gamma ref , \gamma src gamma correction
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values such that a source image Isrc can be color-corrected to match the colors of a given
reference Iref

(3.1)
\Bigl( 
Hsrc \cdot I

1/\gamma src

src

\Bigr) \gamma ref

\sim I
ref

.

Given the reference image Iref , for each other image Ii in the sequence we do the following.
We compute a set of correspondences ptsref and ptsi; we use SIFT [20], although it can be
exchanged by any other method.

Then, from the set of correspondences, we build a system of equations,\Bigl( 
Hi \cdot Ii(ptsi)

1/\gamma src
\Bigr) \gamma ref

 - Iref (ptsref ) =
 - \rightarrow 
0 ,(3.2) \Bigl( 

Href \cdot Iref (ptsref )
1/\gamma ref

\Bigr) \gamma i

 - Ii(ptsi) =
 - \rightarrow 
0 ,

where \{ \gamma i, \gamma ref , Hi, Href\} are the unknowns and Ii(ptsi), Iref (ptsref ) are the pixel values of
corresponding points. Note that we perform a single optimization process, where the only
constraint is Href \cdot Hi \sim Id (the identity). This constraint ensures that the transformation Hi

has an inverse, and that is represented by Href (which corresponds to the matrix that would
transfer the colors of the source into the reference). Thus, we define the objective function as

E (\scrV ) =
\sum 
ptsi

ptsref

\bigm\| \bigm\| Iref (ptsref ) - g1\scrV (Ii(ptsi))
\bigm\| \bigm\| 
2
+
\bigm\| \bigm\| Ii(ptsi) - g2\scrV (Iref (ptsref ))

\bigm\| \bigm\| 
2
,

where \scrV = \{ \gamma ref , \gamma src, Href , Hsrc\} is the set of unknowns, Ii(ptsi), Iref (ptsref ) are the pixel
values of corresponding points, and finally the functions g1\scrV (\cdot ) and g2\scrV (\cdot ) are defined as

g1\scrV (Ii(ptsi)) =
\Bigl( 
Hi \cdot Ii(ptsi)

1/\gamma i
\Bigr) \gamma ref

and g2\scrV (Iref (ptsref )) =
\Bigl( 
Href \cdot Iref (ptsref )

1/\gamma ref
\Bigr) \gamma i

.

(3.3)

At this point, we want to mention that we have considered different sizes for the matrices
Hi and Href , in particular 3 \times 3 and 4 \times 4. In section 4.1, we will explain the specific
implementation details for each case, and in section 4.4, we will present the results and
discussion. Finally, the matrix and nonlinearity \{ \gamma i, Hi\} are applied to the entire image Ii as
in (3.1), and we obtain the linear color-matched image:

(3.4) I \prime i = Hi \cdot I1/\gamma ii .

In Figure 5 we show an example of this procedure.
After we have linearized and color-corrected all images in the sequence, obtaining I \prime i=1,...,N ,

we produce an intermediate HDR result HDRref by performing a weighted average with a
trapezoidal weighting function \omega T , in the range [0, 1], that discards extreme pixel values:

(3.5) HDRref =

\sum N
i=1 \omega 

i
T I

\prime 
i\sum N

i=1w
i
T

.



1634 GIL RODR\'IGUEZ, VAZQUEZ-CORRAL, AND BERTALM\'IO

Figure 5. Top row: the image I3 on the left and the corresponding pixel values I3(pts3) with respect to the

reference image, and, on the right, its linearized version H3I
1/\gamma 3
3 . Bottom row: the reference image I6, together

with the corresponding pixel values I6(pts6) on the left and its linearized version I
1/\gamma 6
6 on the right.

Figure 6. Top row: intermediate HDR images HRDref6 , HRDref9 , and HDRref12 computed taking as
reference exposures 6, 9, and 12, respectively. Bottom row: final HDR output of proposed method after linear
combination of intermediate results. All images have been tone-mapped using [25].

3.2. Step 2. The intermediate HDR results present differences, as Figure 6 shows. In the
top row, the leftmost image correctly captures the bright color checker while missing out the
details on the dark color checker, and the reverse situation occurs with the middle and right-
most intermediate HDR results. Thus, we propose combining the different \{ HDRrefi\} i=1,...,P

images to produce the final HDR output. We scale each of them so that they are all in the
same range since they have been computed from different reference images captured with
different exposures. In order to do this, for each HDRrefi we compute the trimean, defined
as 1

4(Q1 + 2Q2 + Q3), where Q1, Q2, Q3 are the quartiles; we choose the trimean in order
to avoid outliers and take into account the distribution of the image data. Once all trimeans
are obtained, we scale the values of each HDRrefi so that the resulting image has the same
trimean as the one of a selected HDRrefsel , which in our case has been the middle-exposure
reference (image 5 in a 9-image sequence). Finally, we sum the scaled set \{ HDRrefi\} i=1,...,P

to obtain the final HDR image, as shown in Figure 4. By fusing them, we achieve a final HDR
image with more details in both bright and dark areas.
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4. Results and comparisons.

4.1. Experiments. As explained above in section 3.1, we linearize the stack of images
with respect to a reference one, as expressed in (3.4), by estimating a nonlinearity (power-law
function \gamma ) and a linear transformation (matrix H). In this section, we conduct the following
experiments regarding the dimension of matrix H: (1) Estimate H as a 3\times 3 matrix and (2)
estimate H as a projective 4\times 4 matrix.

In the case of considering H a 3\times 3 matrix, we perform three intermediate HDR images
to obtain the final one. We select the middle exposure together with the two around it:
HDRref4,5,6 . This experiment is our proposed method Proposed, and the quantitative and
qualitative results are introduced below in section 4.4. In the optimization process in Step 1,
we estimate 11 unknowns for each image pair (2 \gamma values and 9 elements of the matrix).

The choice of a 4\times 4 matrix will allow the model to be more flexible and to deal with all
those pixels that lay close to the border of the color gamut. In this case, we perform as well
three intermediate HDR images, but this time we select the middle exposure and the first and
last exposures: HDRref1,5,9 . We call this experiment Projective. In the optimization process
in Step 1, we estimate 17 unknowns for each image pair (2 \gamma values and 15 elements of the
matrix). In addition, we consider homogeneous coordinates, by adding 1 to the [R,G,B]T

color vector, for the matrix multiplication. After that, we divide the resulting vector by its
last element, and we only keep the first three coordinates of vector.

The way we estimate the linearized images is slightly different than the one presented
for the 3 \times 3 case. In order to compute the new linear sequence, we first estimate the set of
transformations for each consecutive pair of exposed images: for I1 and I2 the set \{ H1, \gamma 1, \gamma 2\} ,
for I2 and I3 the set \{ H2, \gamma 2, \gamma 3\} , for I3 and I4 the set \{ H3, \gamma 3, \gamma 4\} , and so on. Finally,
the linearization from one Ii image to the given reference would be the composition of all
intermediate transformations.

4.2. Database. We performed our experiments using the HDR Survey data set by Mark
Fairchild [7]. The online public-domain database contains 105 different scenes acquired using
a Nikon D2x DSLR camera. The data consist of corresponding JPEG and RAW images for
different exposures. In each scene, images in the sequence are numbered going from shortest
to longest exposure time. All the scenes except two are composed of 9 images; the other two
have, respectively, and 18 images. For the experiments and evaluation we reduce all images
by a factor of 1/4, so the image size equals 1072\times 712.

4.3. Ground-truth generation. Let us consider N RAW images acquired with different
exposure times \Delta ti. From the header of the RAW file we read the following parameters: (1)
dark and saturation values, which are the minimum and maximum values that the camera
produces; (2) a 3 \times 1 array containing the white balance values for each channel; and (3)
the CFA Bayer pattern, e.g., ``rggb."" The ground-truth (GT) construction is defined in two
stages. The first one is the merging step, where the N RAW images are combined to obtain
a RAW HDR image HDRL,

(4.1) HDRL =

\sum P
i=1 \omega i(RAWi/\Delta ti)\sum P

i=1 \omega i

,

where \omega i is a weighting function.
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We have chosen to use as weighting function t2, where t is the exposure time, for its
simplicity and good performance, as shown in [30].

The second stage of GT creation converts the obtained HDRL into a color image by ap-
plying a number of steps: First HDRL is linearly scaled to range [0, 1]. Next, white balance
is applied. Then demosaicking using the method proposed by Zhang and Xiaolin [38] is used.
Finally, the color transformation is done in which each pixel triplet [R,G,B]t is multiplied by
the 3 \times 3 matrix Mcolor = E \cdot C, where E is the matrix converting XYZ values into sRGB
values and C is the sensor characterization matrix that transforms RGB sensor values into
standard XYZ values and is the one described in [7] for the camera used to acquire the data.

4.4. Evaluation. We compare our approach (Proposed), together with the 4 \times 4 exper-
iment (Projective) in section 4.1, against seven multiple-exposure HDR methods. Four of
them operate only on static scenes: the classical methods of Debevec and Malik (DM) [5] and
Mitsunaga and Nayar (MN) [28] and the recent methods by Lee et al. (Lee13) [18] and Gil,
Vazquez-Corral, and Bertalm\'{\i}o [9]. The other three work also on dynamic scenes: Lee, Li,
and Monga (Lee14) [17]; Sen et al. (Sen) [32]; and Hu, Pulli, and Sun (Hu) [13] (linearization
performed with Debevec and Malik [5]). We use public available codes either from the authors
(Sen et al. [32]; Lee, Li, and Monga [17]; and Lee et al. [18]; and Hu, Pulli, and Sun [13]) or
by the HDR Toolbox from Banterle et al. [1] for Debevec and Malik [5] and Mitsunaga and
Nayar [28].

Starting with quantitative, objective evaluation, we compare the HDR outputs of each
algorithm (with JPEG sequences as input) versus the computed GT using six standard metrics
suggested in Hanhart et al. [12] for this purpose: for luminance, peak signal-to-noise ratio
(PSNR), structural similarity metric (SSIM) [37], and HDR quality assessment HDR-VDP-2
[26]; for color, the color version of PSNR (CPSNR), the color extension of SSIM called CID
[19], and the color difference measure CIEDE2000 (\Delta E\ast 

00) [33]. Finally, we also compute the
l2-norm on RGB space of the difference between a given method and the GT. The results,
averaged over the data set,2 are presented in Table 1. We can see that our method outperforms
the others according to all metrics, except for color metrics CID and \Delta E\ast 

00, where Projective
is superior, and HDR-VDP-2, where DM [5] performs better. Our algorithm comes second
in both cases. Let us note that for HDR-VDP-2 the average is done over the 42 images for
which photometer readings exist for the minimum and maximum absolute luminances of the
scene, as these values are required by the metric.

To show that the errors due to fluctuations in camera parameters can result in very visible
artifacts, in Figure 7, top to bottom, we compare the outputs of DM [5], Lee13 [18], Sen
[32], and our approach for the scenes RITTiger, HancockKitchenInside, TheNarrows2, and
MasonLake1, from left to right. All results have been tone-mapped with the method in
[25]. For the scene RITTiger we can see that DM [5] (first row) presents a red cast in the
image; therefore, Sen [32] (third row) has the same color cast since it uses DM as input. In
TheNarrows2, Lee13 [18] (second row) shows very noticeable color issues. Finally, for the

2For all metrics apart from HDR-VDP-2 we use all the images except Zentrum, since MN [28] is not able
to produce a reliable result for this image. Also, the algorithm of Hu, Pulli, and Sun [13] only produces an
output for 64 out of the total 105 scenes, so we have chosen to present just a qualitative comparison, in Figure
8.
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Table 1
Mean (\=x) and median (\v x) results from all the presented methods versus GT among the 104 scenes. The

last metric, HDR-VDP-2, is computed only among the 42 images containing the values for the minimum and
maximum absolute luminances.

PSNR L CPSNR SSIM L CID L2 \Delta E\ast 
\bfzero \bfzero HDR-VDP-2

DM
\=x 29.48 28.77 0.890 0.179 0.052 4.41 60.37
\v x 27.44 27.29 0.912 0.150 0.032 3.87 61.32

MN
\=x 26.50 25.91 0.863 0.194 0.071 5.32 57.75
\v x 25.01 24.79 0.872 0.175 0.071 5.02 57.79

Lee13
\=x 30.91 30.24 0.905 0.179 0.043 4.56 59.48
\v x 29.29 28.94 0.929 0.125 0.030 3.37 59.88

Sen
\=x 28.59 27.90 0.860 0.208 0.058 4.89 56.96
\v x 27.11 26.79 0.899 0.189 0.034 4.25 57.17

Lee14
\=x 28.66 28.01 0.868 0.169 0.048 4.45 59.00
\v x 27.89 27.22 0.927 0.123 0.037 3.72 58.23

Gil
\=x 30.37 29.43 0.899 0.164 0.044 4.74 58.44
\v x 29.97 29.21 0.924 0.141 0.032 4.19 60.16

Projective
\=x 32.18 31.62 0.882 0.093 0.041 2.44 59.22
\v x 31.40 30.40 0.931 0.064 0.028 1.54 59.50

Proposed
\=x 33.45 32.68 0.930 0.110 0.033 3.39 60.00
\v x 34.02 32.28 0.942 0.098 0.025 3.36 60.98

MasonLake1 scene, the method of Lee13 presents a blue cast, while DM presents a reddish
cast, and the method of Sen shows a banding artifact effect on the sky region.

To highlight that the visual problems described before are not due to a particular choice
of tone-mapping algorithm, Figure 8 shows the same HDR results but tone-mapped with two
different methods: [25] for the first two columns and [6] for the last ones. The scenes are
AirBellowsGap (columns 1 and 3) and LabWindow (columns 2 and 4), while the multiple-
exposure HDR methods to compare are, from top to bottom; MN [28], Lee14 [17], Hu [13],
and our approach. We can see how the previously existing methods produce color artifacts in
the sky and sun of the AirBellowsGap scene and in the curtains, sky, and background of the
LabWindow scene, which are apparent for both of the tone-mapping methods used.

4.4.1. Experimental discussion: 3 \times 3 versus 4 \times 4 matrix \bfitH \bfiti . Next, we point out
interesting outcomes from the comparison of both experiments. Although the 4 \times 4 results
were expected to outperform the 3 \times 3 ones, the quantitative results suggest otherwise (see
Table 1). The explanation for that relies on the matrix definition. Let us introduce a projective
transformation,

(4.2)

\left(  A3\times 3 w

vT \upsilon 

\right)  ,

where (A3\times 3| w) is an affine transformation and vT represents the transformation of the ``line
at infinity."" Notice that the information about exposure time is carried by matrix A3\times 3. In
the context of HDR acquisition, in images with a large difference in exposure time, the offset
w might affect dark/bright areas containing relevant data by making them darker/brighter
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DM

Lee13

Sen

Proposed

Figure 7. From left to right: scenes RITTiger, HancockKitchenInside, TheNarrows2, and MasonLake1
from the HDR Survey. From top to bottom: results from DM [5], Lee13 [18], Sen [32], and our approach. All
images tone-mapped with [25].

during the optimization process. This fact has a huge impact on the recovery of the final HDR.
As an example, let us consider a well-exposed image (as the reference) and an underexposed
image (which captures information on bright scene areas). In this case, the estimated 4 \times 4
matrix might brighten all the underexposed regions by selecting a very high value of the offset
parameter and not by selecting high values in the first three elements of the diagonal. When
this happens, the high values of the w offset clearly compromise the dynamic range of the
final HDR by reducing it.

Nevertheless, the Projective choice shows better performance in terms of color. As an
example, Figure 9 shows the linearization results of a set of images, considering 3 \times 3 and
4 \times 4 matrices. From the 507 scene, we select two images, I5, and I8; see first row. We set
image 5 as the reference one. This example helps us to show that the projective transformation
(third row) outperforms qualitatively the 3 \times 3 case (second row) in terms of color. Let us
focus on the frontal part of the car: On the one hand, the color-matched image I8 using 3\times 3
matrix (second row, third column) presents a brighter red. On the other hand, the projective
transformation allows recovering the darker red color of the car (third row, third column).
The same occurs in the blue digits 507. In the 3\times 3 case (second row, last column), the blue
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MN

Lee14

Hu

Proposed

Figure 8. First and third columns: AirBellowsGap scene. Second and fourth columns: LabWindow scene.
Columns 1 and 2: results tone-mapped with [25]. Columns 3 and 4: results tone-mapped with [6]. From top to
bottom: results from MN [28], Lee14 [17], Hu [13], and our approach.

color appears brighter than the reference image, whereas in the projective case, the blue is
recovered. This explains why the Projective outperforms the Proposed one in terms of the
color metrics (CID and \Delta E\ast 

00).

4.4.2. Dynamic scenes. It is worth emphasizing that the proposed algorithm does not
require image registration, only a set of pixel correspondences. Therefore, it can be used
on dynamic scenes as well: In particular, Step 1 of our method can be employed as a pre-
processing step to color-stabilize the inputs of HDR methods operating on dynamic scenes,
enhancing their performance. To illustrate this, we consider the algorithm of Sen et al. [32],
which receives linearized images as input. Consequently, given a stack of nonlinear images,
we compare three linearizing approaches: (1) CRF computed by Debevec and Malik [5], (2)
radiometric calibration by Lee et al. [18], and (3) applying Step 1 of our method, using
as a reference the image in the midpoint of the sequence and finding pixel correspondences
with SIFT [20]. We conducted this experiment on a stack of five images from the data set
presented in [32], the Skater sequence (which comes in JPEG format). In Figure 10 we present
the HDR outputs obtained using the three different linearization approaches. The zoomed-in
details allow us to see how linearization by [5] (left) produces artifacts in overexposed areas,
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I5 (reference) I8

I\bffive 
\Bigl( 
H\bfeight \cdot I\bfone /\gamma \bfeight 

\bfeight 

\Bigr) \gamma \bffive 

I\bffive 
\Bigl( 
H\prime 

\bfeight \cdot I\bfone /\gamma \bfeight 

\bfeight 

\Bigr) \gamma \bffive 

Figure 9. Top row: the LDR images 5 (reference) and 8 from the 507 scene [7]. Middle row: the color-
matched results considering a 3 \times 3 matrix (H). Bottom row: the color-matched results considering a 4 \times 4
matrix (H \prime ). The last two columns present the ROI shown as cyan rectangles in each corresponding row. Notice
the red color in the front of the car and the blue numbers 507. The 4\times 4 results are closer to the reference than
the 3\times 3 ones.

Figure 10. HDR results on a dynamic scene applying the HDR creation method of Sen et al. [32] with
three different linearization techniques: Debevec and Malik [5] (left), Lee et al. [18] (middle), and step 1 of
our proposed method (right), taking as reference the image in the midpoint of the sequence. HDR results
tone-mapped with Mantiuk, Daly, and Kerofsky [25].

whereas linearization with [18] produces results that, although free from artifacts, have lower
contrast and less saturated colors than what can be obtained with our method.

5. Conclusions. Our experiments show that the camera response function changes with
the exposure and depends on the three color channels simultaneously. For this reason, multi-
exposure HDR approaches based on estimating and inverting a CRF that is supposed to be
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constant may have substantially more error than if computed directly from the linear data,
and when tone-mapped, they commonly show hue shifts, color artifacts, or contrast problems.
In this work we have proposed a method for removing the fluctuations in the internal settings
that the camera has automatically modified, so that our approach effectively makes the CRF
constant for the whole sequence. It can be applied to both static and dynamic scenes. Our
results are more accurate than those obtained with state-of-the-art methods and show no
visual problems.

Acknowledgments. The authors would like to thank Mark Fairchild for his kind help and
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