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Color matching images with unknown non-linear
encodings

Raquel Gil Rodrı́guez, Javier Vazquez-Corral, and Marcelo Bertalmı́o

Abstract—We present a color matching method that deals with
different non-linear encodings. In particular, given two different
views of the same scene taken by two cameras with unknown
settings and internal parameters, and encoded with unknown
non-linear curves, our method is able to correct the colors of
one of the images making it look as if it was captured under the
other camera’s settings. Our method is based on treating the in-
camera color processing pipeline as a concatenation of a matrix
multiplication on the linear image followed by a non-linearity.
This allows us to model a color stabilization transformation
among the two shots by estimating a single matrix -that will
contain information from both of the original images- and an
extra parameter that complies with the non-linearity. The method
is fast and the results have no spurious colors. It outperforms the
state-of-the-art both visually and according to several metrics,
and can handle HDR encodings and very challenging real-life
examples.

Index Terms—Color stabilization, color matching, logarithmic
encoded images, gamma-corrected images, HDR encoding, PQ,
HLG.

I. INTRODUCTION

COLOR MATCHING techniques aim to map the colors of
one image, defined as source, to those of a second image,

defined as reference. A particular case is color stabilization,
where the two pictures are taken from the same scene and
differ in terms of color. These differences in color may be
caused either by the use of different camera models, which
follow different internal procedures tailored by the manufac-
turer or by the use of the same camera but under different
settings like white balance, exposure time, etc.

Digital cameras perform a number of image processing
steps, including demosaicing, white balance, color correction
(from RGB camera sensor to device independent color space),
and encoding standard. Bianco et al. [1] proposed a generic
model of the color processing pipeline of digital cameras

Iout = (A · Ilin)
1/γ

, (1)

where Ilin is the linear image read by the camera sensor
after demosaicing, Iout is the output image, A is a 3 × 3
matrix which carries color information and white balance and
the value γ defines a power law function (usually known
as gamma correction). This is a simplified version of the
pipeline, since other processing techniques, like denoising,
contrast enhancement, etc. are also applied. Nonetheless, this
approximation is quite accurate for those pixels not laying
close to the boundary of the color gamut.

Although gamma correction has been the most used encod-
ing technique, it fails when working with high dynamic range
(HDR) imaging, mostly due to quantization issues. Current
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Fig. 1. Linear response (dashed) versus gamma-corrected (circle) and loga-
rithmic response (continuous). The gamma correction was defined as γ = 2.2,
and the logarithmic curve is an instance of an ARRI Log C curve.

professional cinema cameras are able to capture a wide range
of light intensities, and therefore, a compression of this range
is needed for storage, while preserving all the details and
appearance. For this reason, cinema cameras replace gamma
correction with a logarithmic function whose general form
(common to the most popular log-encoding approaches [2],
[3]) can be expressed as:

Iout = c log10 (a ·A · Ilin + b) + d, (2)

where Iout and Ilin are defined as above, and the parameters
a, b, c, and d are constant real values (varying for different
camera manufacturers and camera settings). Figure 1 shows
the plot of linear (dashed), gamma-corrected (circle) and
logarithmic (continuous) responses to linear values. Notice that
gamma correction and logarithmic curve assign respectively
50% and 80% of the output range to the first 20% of the
linear intensity values.

More recently, other non-linear encoding curves devised for
HDR content have appeared. The most well-known of these
curves are Perceptual Quantizer (PQ) [4] and Hybrid Log-
Gamma (HLG) [5]. They were designed to reduce quantization
errors in the storage and coding of HDR scenes. Both PQ and
HLG are mathematically well-defined. For more details on the
curves definition, we refer the reader to [4] and [5].

In the industry, solutions for bringing consistency across
image shots usually involve very skilled manual work, done by
colorists during color grading in movie post-production and by
technicians using camera control units (CCU) [6] in live TV
broadcasts. They may also require a proper characterization
of the cameras used and their settings like with the ACES
framework [7], or the presence of color-charts in the shots.

In image processing and computer vision research, it is
an open problem to color match a pair of pictures. We can
differentiate between two different cases: i) the image pair
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does not necessarily share any content (color transfer), or
ii) the image pair is acquired from the same scene (color
stabilization). The latter can be understood as a constrained
color transfer problem.

The aim of color transfer methods is to transfer the colors
presented in the reference image to the source image. A
seminal work in color transfer was proposed by Reinhard et
al. [8], where the pair of RGB images are first converted to
a decorrelated color space and then the mean and variance
from the reference are transferred to the source. Pitié et al.
[9] [10] defined the images as probability density functions,
and then match them through an iterative non linear process. It
is worth mentioning color transfer as an application of optimal
transport, which minimizes the cost of transferring probability
density distributions of the source image into the reference
one, as in Rabin et al. [11] and Ferradans et al. [12] works.
Pouli and Reinhard [13] performed histogram matching along
different scales given images of different dynamic ranges. The
method presented by Kotera [14] proposed to compute the
principal components of the 3D color distributions, in order
to match the principal axes of the source to the reference image
by a matrix multiplication (rotation and scaling). Xiao and Ma
[15] worked with color statistics, and in [16] they proposed a
gradient preserving color transfer technique, and an evaluation
metric for color transfer methods. Nguyen et al. [17] presented
a color transfer method that first applies color constancy to
the input images, then it performs luminance matching, and
finally the color gamuts are aligned by a linear transformation.
Hwang et al. [18] suggested to use moving least squares for
color transfer, by also incorporating a probabilistic measure
to ensure robustness against noise and outliers. Gong et
al. [19], [20] proposed a color transfer method based on
a projective transformation and a mean intensity mapping.
All the above mentioned methods are global, although some
local approaches also exist. The work of Tai et al. [21]
segmented images into regions, and then it used Gaussian
Mixture Models (GMM) to represent color distributions before
the matching is performed. Xiang et al. [22] also followed a
GMM representation of color areas, before matching them.

Color stabilization tackles the situation where some regions
or objects appear in both the reference and the source im-
ages. HaCohen et al. [23] presented a method to compute
dense correspondences between the images, combined with a
global color mapping model. Vazquez-Corral and Bertalmı́o
[24] proposed a color stabilization algorithm that consists of
estimating a power law (γ value) for each of the images, and
a single 3× 3 matrix, to color match the source image to the
reference. It is built on the assumption that in digital cameras
the color encoding can be expressed as a matrix multiplication
followed by a power law (gamma correction). Frigo et al.
[25] presented a method to color stabilize video sequences,
based on the estimation of a non-linearity and channel-based
scaling. To the best of the authors knowledge, there are only
two color stabilization works for logarithmic images. One is
the method of Vazquez-Corral and Bertalmı́o [26], that relies
on finding a sufficiently large number of achromatic matches
among source and reference. Let us note that the need of
detecting achromatic matches may be a challenging limitation

in some cases. The other method [27] is an earlier version of
the current work, with a different algorithm that consistently
underperforms the one we will introduce here as it is shown
in the Results section.

Color consistency refers to the situation when a set of
images from the same scene need to be color matched.
HaCohen et al. [28] extended their previous approach in color
stabilization problem [23], to the case of more than two
images. In a recent work, Park et al. [29] proposed a model in
which the parameters to be estimated are a gamma correction
and a white balance constant. Xia et al. [30] presented a
method to achieve color consistency in image stitching. On the
overlapping regions among the shots, it computes parametric
curves for each channel under color, gradient and contrast
constraints. A review of the performance of color transfer
methods is presented in Xu and Milligan [31] for image
stitching.

Our main contribution in this work is a method able to color
match pairs of images that were encoded with different non-
linearities (gamma, logC, HLG, PQ). This work is an extension
of the one presented in [27]. In this paper, we improve over the
previous approach in different ways. First, we allow the matrix
in our model to be a projective 4×4 matrix. This brings more
flexibility to the model which enables allowing it to better deal
with saturated pixels that have gone through different non-
linear in-camera operations such as tone-mapping or gamut-
mapping. Also, we introduce a new term in the minimization,
which minimizes errors in the perceptual Lab color space.
Furthermore, we show how our method can be used when
images are encoded with HLG and PQ curves, the two current
standards for HDR encodings. Lastly, in this paper we present
a new dataset and framework for the problem, and perform
larger comparisons both in terms of the methods and the
metrics considered. Our results outperform the rest of the
algorithms both quantitative and qualitatively.

II. METHODOLOGY

In this paper, we present a color stabilization method that
takes as input an image pair encoded with unknown non-linear
curves. For simplicity we explain the method for the case of
gamma correction and logarithmic encodings, and at the end
of this section, we show how to handle as well PQ and HLG
encodings. The main steps of our method can be outlined as
follows:

1) If source or reference are log-encoded, we transform
them into gamma-corrected.

2) We color-stabilize the images by estimating a 4 × 4
matrix and two power law values.

3) Finally, we undo the correction made in the first step if
necessary (in case the original reference image is log-
encoded).

We refer the reader to the flowchart of the proposed model
in Figure 2. We have made the code for our implementation
available at http://ip4ec.upf.edu/ColorMatching.

A special case is when dealing with HLG and PQ encoded
images. In this case, we proceed as if the images were log-
encoded. Please note that this is an approximation, as these
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Fig. 2. Flowchart of the proposed color stabilization method. Given two non-linear encoded images, reference (Ir) and source (Is), we apply the transformations
Tr and Ts to the image pair. These transformations are defined as the power 10 function 10×, in case of a given log-encoded image; and as the identity 1, in
case of gamma corrected input. Then, we compute a set of correspondences ptsr and ptss, using standard feature descriptor (e.g. in this article SIFT [32]).
From this set of corresponding pixel locations, we estimate the parameters {γr, γs, Hs} in the pixel values correspondences. The computed values are applied
to the Ts(Is) image. Finally, T−1

s function is applied to the color matched image.
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Fig. 3. Graph of 3 logarithmic encoded curves Log C ARRI of EI 320
(green), Log C ARRI of EI 1280 (magenta) [2], and S-Log [3] (blue) plotted
in continuous lines. In addition, the same logarithmic curves by setting b = 0
in their definitions (dashed lines). Note that the distance between the dashed
and continuous lines from the same color is negligible.

curves do not follow the definition in Equation (2). This said,
this approximation works extremely well, as it is shown in
section IV.

A. Conversion of log-encoding to gamma correction

Let us consider a log-encoded image as in Equation (2).
If we apply a power 10 function to it (denoted as T (·)), we
obtain the following expression

T (Iout) = 10Iout = 10log10((a·A·Ilin+b)
c) · 10d (3)

= (a ·A · Ilin + b)
c · 10d.

In logarithmic encoding curves, the value of parameter b is
usually small. As Figure 3 shows, for the three different
logarithmic curves (continuous lines), their equivalent curves
fixing b = 0 (dashed lines) lie on top. Therefore, we can
simplify Equation (3) by neglecting b,

T (Iout) = (a ·A · Ilin)c · 10d = (K · Ilin)c, (4)

where K = a · A · 10d/c is a matrix with the same size as
A. Notice how Equation 4 has the same form as Equation (1).

Therefore, by applying the power 10 function to a log-encoded
image, it can now be treated as a regular gamma-corrected
picture.

B. Color stabilization

If Ir or Is (or both) are log-encoded, we transform them into
gamma-corrected images I ′r and I ′s, as explained in the previ-
ous Section. Then we compute a set of correspondences ptsr
and ptss; we use SIFT [32] for this purpose, although it can be
replaced by any other method. It is important to note that we
compute the correspondences between I ′r ↔ I ′s, and I ′s ↔ I ′r,
and select those that appear in both directions. This allows us
to discard some potentially incorrect correspondences. Let us
now define the pixel values in the corresponding locations of
I ′r and I ′s as

{(R
′

r, G
′

r, B
′

r)
t}i, and {(R

′

s, G
′

s, B
′

s)
t}i, (5)

where i = 1, . . . , N denotes the number of correspondences.
We follow the idea from the color stabilization model proposed
in [24],

Hs · I ′
γs

s
∼ I ′

γr

r
, (6)

where Hs was a 3 × 3 matrix that transforms colors from
the source to match the ones of the reference, and γr, γs
are inverse gamma correction values. In this work, we extend
the matrix Hs as a projective transformation with size 4 × 4
(inspired by color homography [19], [20]). By doing this,
the model can deal not only with pixels in the core of the
color gamut, but also with those values that appear on the
border, which are the most affected by gamut mapping and
tone mapping. Then, from the set of correspondences, we can
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Fig. 4. Evaluation framework. On the left, data acquisition is described. Pictures are taken from the same scene, and from two different points of view
Perspective1 and Perspective2. From the first one, the reference image is taken, and from the second, the source and the ground truth. Images are stored
in RAW and JPEG format, and we chose different camera settings P1, for reference and ground truth, and P2 parameters for the source. On the middle,
data is created by linearizing the JPEG image, i.e undoing the gamma correction I . Once linearized, a random non-linearity is applied, and the new image
and the non-linearity are stored {I, nonlin}. Finally, the reference Ref and source Src become the input images for the color matching methods, and the
corresponding output is evaluated against the GT.

build a system of equations considering matrix size 4× 4 and
homogeneous coordinates,

Hs ·


R

′

s

G
′

s

B
′

s

1


γs

−


R

′

r

G
′

r

B
′

r

1


γr

= 0, (7)

Hr ·


R

′

r

G
′

r

B
′

r

1


γr

−


R

′

s

G
′

s

B
′

s

1


γs

= 0,

where {γs, γr, Hs, Hr} are the unknowns. We perform a single
optimization process, where the only constraint is Hr ·Hs ∼ 1
(the identity). This constraint assures that the transformation
Hs has an inverse, and that is represented by Hr (which
corresponds to the matrix that would transfer the colors of the
source into the reference). The objective function considers the
3× 1 non-homogeneous coordinates. This function considers
the differences on (R,G,B) points, plus the differences on Lab
color space. In this way, we bring the corresponding point
clouds (color matched and reference) as close as possible, both
in terms of the display RGB color space, and also regarding
perceptual color differences in the Lab space.

E (V) = ERGB (V) + ELab (V) , (8)

where V = {γr, γs, Hr, Hs} is the set of unknowns, and
ERGB and ELab are the errors in the RGB and Lab color
spaces, respectively. These terms are defined as

ERGB (V) =
∑
RGBs
RGBr

∥∥RGBr − g1V (RGBs)
∥∥
2

+
∥∥RGBs − g2V (RGBr)

∥∥
2
, (9)

ELab (V) =
∑
RGBs
RGBr

∥∥Lab (RGBr)− Lab
(
g1
V

(RGBs)
)∥∥

2

+
∥∥Lab (RGBs)− Lab

(
g2
V

(RGBr)
)∥∥

2
,

(10)

where RGBs, RGBr are the (R,G,B) values of correspond-
ing pointsptss and ptsr, Lab(·) corresponds to the color
transformation from RGB to Lab, and finally the functions
g1
V

(·) and g2
V

(·) are defined as

g1
V

(RGBs) =
(
Hs ·RGB

γs

s

)1/γr
and (11)

g2
V

(RGBr) =
(
Hr ·RGB

γr

r

)1/γs
. (12)

Finally, the matrices and non-linearities are applied to the
entire images as in Equation (6), and we obtain the color
matched image:

I
′′

s =
(
Hs · I ′

γs

s

)1/γr
. (13)

C. Conversion back to log-encoded images

If Is was log-encoded, we apply a log10 function, denoted
as T−1(·), to the result of the previous step so as to undo the
power 10 transform we applied at the beginning.

III. EXPERIMENTS WITH GAMMA AND LOGARITHMIC
ENCODING NON-LINEARITIES

This section is divided into 3 different parts. First, we
describe how we have created an image dataset for evaluation.
Second, we compare our approach with seven popular color
matching methods. Third, we evaluate the performance of the
rest of methods when the proposed power 10 is applied in the
case of log-encoded images.

A. Dataset

Our data is composed of different scenes, where each of
them contains a reference image Ref, a source image Src and a
ground truth image GT. In order to acquire our data, we work
in camera manual mode to have full control over exposure
time, white balance, ISO value, and aperture. We stored RAW
and JPEG formats for each image. In that way, we have the
linear information read by the camera sensor (RAW), as well
as the final compressed image (JPEG). Images were taken
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TABLE I
RESULTS FROM THE COMPARISON AMONG 35 IMAGE PAIRS FOR: 1) TWO γ-ENCODED IMAGES, 2) TWO LOG-ENCODED IMAGES, 3) REFERENCE

LOG-ENCODED AND SOURCE γ-CORRECTED, AND 4) REFERENCE γ-CORRECTED AND SOURCE LOG-ENCODED.

∆E∗
00 PSNR L CPSNR CID RMSE

µ µ̂ µ µ̂ µ µ̂ µ µ̂ µ µ̂
R

ef
γ

-S
rc
γ

Kotera 11.111 7.686 21.122 23.877 19.786 21.040 0.458 0.394 0.145 0.089
Pitie 3.567 3.394 26.162 25.946 25.696 25.769 0.174 0.157 0.055 0.051
Reinhard 4.777 4.652 25.525 25.162 23.904 23.571 0.205 0.191 0.068 0.066
Xiao 4.377 4.232 25.940 26.077 25.183 25.270 0.196 0.160 0.059 0.055
Ferradans 5.522 5.308 23.715 23.874 23.028 22.560 0.260 0.237 0.078 0.074
Park 3.428 3.020 27.604 27.381 26.595 26.384 0.157 0.134 0.051 0.048
Gil 3.726 3.554 27.420 27.228 26.116 24.965 0.164 0.149 0.054 0.056
Ours 3.263 3.092 27.650 27.271 26.907 26.576 0.145 0.125 0.049 0.047

R
ef

lo
g

-S
rc

lo
g

Kotera 14.234 8.381 18.586 21.081 17.615 19.676 0.551 0.481 0.179 0.104
Pitie 3.978 4.044 25.797 25.369 25.119 25.099 0.207 0.201 0.059 0.056
Reinhard 7.878 7.916 22.656 22.512 19.899 19.369 0.364 0.368 0.107 0.108
Xiao 5.632 5.599 24.330 23.910 23.199 23.190 0.272 0.264 0.072 0.069
Ferradans 8.587 7.047 19.351 20.831 18.925 20.250 0.395 0.325 0.128 0.097
Park 6.768 4.548 26.217 26.162 23.961 24.196 0.296 0.210 0.083 0.062
Gil 4.057 3.644 27.027 26.689 25.665 25.379 0.193 0.155 0.057 0.054
Ours 3.400 3.022 27.446 27.158 26.587 26.479 0.161 0.135 0.050 0.047

R
ef

lo
g

-S
rc
γ

Kotera 15.704 12.405 17.017 18.864 15.970 16.625 0.631 0.586 0.199 0.148
Pitie 3.909 3.830 25.796 25.498 25.225 25.020 0.200 0.201 0.059 0.056
Reinhard 7.928 7.516 21.260 21.056 18.883 18.687 0.393 0.392 0.117 0.116
Xiao 7.926 7.554 21.446 20.539 20.438 20.059 0.403 0.416 0.100 0.099
Ferradans 8.578 7.954 19.654 19.163 19.172 18.518 0.381 0.369 0.122 0.119
Park 5.895 5.242 24.038 23.352 22.972 22.294 0.305 0.290 0.078 0.077
Gil 4.066 3.667 27.102 26.847 25.741 25.627 0.188 0.178 0.058 0.052
Ours 3.377 3.140 27.571 27.606 26.712 26.632 0.157 0.129 0.050 0.047

R
ef
γ

-S
rc

lo
g

Kotera 12.658 9.202 18.629 20.748 17.893 20.089 0.538 0.430 0.162 0.099
Pitie 3.752 3.903 25.957 25.538 25.378 25.217 0.184 0.173 0.057 0.055
Reinhard 6.438 6.246 22.861 22.642 21.776 21.666 0.291 0.291 0.084 0.083
Xiao 6.794 5.734 23.023 22.770 22.097 22.215 0.322 0.314 0.081 0.077
Ferradans 6.317 6.165 22.222 21.826 21.577 21.357 0.318 0.298 0.089 0.086
Park 12.808 9.620 20.746 22.593 18.779 19.351 0.510 0.454 0.147 0.108
Gil 3.863 3.476 27.197 26.672 25.889 25.341 0.173 0.162 0.054 0.054
Ours 3.444 3.313 27.395 26.922 26.563 25.684 0.152 0.144 0.050 0.052

using two camera models, Nikon D3100 (12-bits) and Canon
EOS80D (14-bits). Let us explain the steps we follow from
acquisition to the final triplet Ref, Src, and GT images for
each scene:

• Set the parameters of the camera P1 (exposure time, white
balance, ISO value, and aperture), the camera position
Perspective1, and acquire the Reference (Ref) set RAW
and JPEG.

• Use the same camera parameters (P1) as in the Ref set,
and change the camera position to Perspective2, then we
acquire the Ground-Truth (GT) set RAW and JPEG.

• From the last camera position Perspective2, vary the
camera settings to a different configuration P2 to acquire
the Source (Src) set.

• For each pair (RAW, JPEG) obtain {I, nonlin}:
1) Preprocess the RAW input to obtain an RGB linear

image using DCRAW [33] open source code, we
refer to this image as RAWrgb.

2) Estimate the γ correction curve, between the pre-
processed RAWrgb and the JPEG using [24].

3) Undo γ from the JPEG image in order to obtain
a linear image called I with the camera color
processing still in.

4) Apply a random generated non-linearity to I . In case
of gamma correction, we set values to be selected in
the range [1.7, 2.7], and for logarithmic curves, we

select the definitions from Log C ARRI (a total of
11 curves) [2], and S-Log from Sony [3]. We name
the applied non-linearity nonlin.

5) In case of GT, the same nonlin as the one selected
for the reference is applied.

B. Results and comparisons

We evaluate our approach against seven state-of-the-art
methods for color transfer, stabilization and consistency: Rein-
hard et al. [8] (Reinhard), Kotera [14] (Kotera), Xiao and Ma
[15] (Xiao), Pitié et al. [10] (Pitie), Ferradans et al. [12]
(Ferradans), Park et al. [29] (Park), and Gil Rodrı́guez et
al. [27] (Gil). We want to emphasize that for Pitié et al.
[10], we focus only on the global part of the method. We
studied all possible combinations of applied non-linearities to
the reference and source image:

1) two gamma-corrected images,
2) two log-encoded images,
3) one gamma-corrected as reference and one log-encoded

as source,
4) one log-encoded as reference and one gamma-corrected

as source.
In the quantitative evaluation we select the following color
metrics:
• PSNR of luminance channel (PSNR L),
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Reference Source GT Ferradans et al. [12] Our method
R

ef
γ

-
Sr

c
γ

CID = 0.281 CID = 0.137

Gil Rodrı́guez et al. [27]

R
ef

lo
g

-
Sr
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Pitié et al. [10]

CID = 0.363 CID = 0.290

Xiao and Ma [15]

R
ef

lo
g

-
Sr

c
γ

CID = 0.455 CID = 0.134

Park et al. [29]

CID = 0.460 CID = 0.127

Reinhard et al. [8]

R
ef

γ
-

Sr
c
lo
g

CID = 0.427 CID = 0.117

Kotera [14]
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Fig. 5. Results of all the methods for the four comparisons. Each block represents: 1) gamma-corrected image pair, 2) log-encoded input images, 3) log-
encoded reference and gamma-corrected source and 4) gamma-corrected reference and log-encoded source. The first column presents the reference, the second
shows the source, the third the GT, the fourth the methods result, and the last our result. We present for 1) Ferradans et al. [12], 2) Gil Rodrı́guez et al. [27]
and Pitié et al. [10] methods and 3) Xiao and Ma [15] and Park et al. [29] methods, and 4) Reinhard et al. [8] and Kotera [14] methods.

• color PSNR defined as CPSNR is the mean of the PSNR
among the three color channels,

• root mean squared error (RMSE),
• ∆E∗00 [34] accounts for ‘perceptually uniform’ differ-

ences in the CIELAB color space,
• CID [35] is the color extension of SSIM [36], and it is

therefore supposed to capture errors more perceptually
than PSNR.

For each metric we show the mean (µ) and the median (µ̂).
Notice that in order to compare the color-stabilized and the
GT in case of log-encoded images, we first undo the ground-
truth non-linearity (since it is known) from the result and GT,
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and then we apply a gamma-correction of value 1/2.2. We
use the data computed as described in Section III-A, which
consists of 35 image pairs. In all the Tables for the quantitative
comparisons we show in green the best results, and then in blue
and orange, the second and third, respectively. In Figures 5
and 6, the log-encoded images are shown in sRGB for display
purposes (as before, we first discount the ground-truth non-
linearity, and then we apply the sRGB gamma).

1) Gamma-corrected inputs: The first block in Table I
presents the results of pairs encoded using gamma correction.
In most of the metrics our method outperforms the rest of
algorithms, except for median values of ∆E∗00 and PSNR L,
in which Park et al. [29] obtains better results.

In the first row of Figure 5, we show the results for one
scene. The first column shows the reference, the second the
source, and the third the GT. In this example, we compare
our algorithm (last column) against the method of Ferradans
et al. [12] (fourth column). We can see that [12] loses color
saturation in general, and introduces gray colors in the output
of the floor.

2) Log-encoded inputs: In the second block of Table I, it
is shown that our method outperforms the rest of algorithms
in all the metrics.

From Figure 5 (second and third rows), Gil Rodrı́guez et
al. [27] is not able to darken the green color of the grass,
which it is closer to the vivid look in the source image. In the
second scene, the output from Pitié et al. [10] cannot recover
the red color of the garage in the background, and it presents
a purplish color in one of the doors, and it makes appear some
clouds on the sky.

3) Log-encoded reference and gamma-corrected source: In
the third block of Table I, our proposed method outperforms
the rest of the algorithms in all the metrics.

Figure 5 shows the results from Xiao and Ma [15] (fourth
row), and Park et al. [29] (fifth row), for this case. In the first
scene, notice that [15] enhances yellow and red colors, and
it saturates the upper right corner of the wall. The method in
[29] shows a color shift in the floor, and intensifies the purple
color on the right side.

4) Gamma-corrected reference and log-encoded source:
The last block in Table I presents the results where the
reference is a gamma-corrected image, and the source is log-
encoded. For all the metrics, our method outperforms the rest
of algorithms.

Figure 5 shows the results from Reinhard et al. [8], and
Kotera [14] (last two rows), for this case. The result from
[8] shows a yellowish cast on the wall. The method of [14]
presents washed out colors, e.g. the chair and the wall behind
it.

C. Results with power 10

In this subsection we analyse the performance of the rest
of methods when also applying a power 10 function to them.
More in detail, we first apply the power 10 function to the
log-encoded inputs, we then apply the selected method to the
new images, and finally we undo the power 10 if necessary.
From now on, we refer to this process as method10. The results

for all the comparisons and methods are presented in Table II.
Our results and the results of Gil Rodrı́guez et al. from the
previous Table are also included for comparative purposes.

1) Log-encoded inputs: Results show a considerable im-
provement between the original methods and after applying
power 10, see first block. The only exceptions are the algo-
rithms of Pitié et al. [10] and Ferradans et al. [12], which have
a similar performance with and without power 10.

2) Log-encoded reference and gamma-corrected source:
Results show a considerable difference between the original
method and after applying the power 10 preprocessing. Notice
the boosting of Park et al., which improves significantly versus
its original version. It is ranked second after our approach in
most of the metrics, and in median PSNR L and CPSNR it gets
the best results, see Table II (second block). In Figure 6, the
Park10 method presents no color shift on the floor, although
it cannot completely recover the yellow color of the truck.

3) Gamma-corrected reference and log-encoded source: In
this case, although Park et al. improves their previous results, it
is not as noticeable as in the previous comparison. The method
of Pitie10 outperforms Park10 as opposed to the previous case;
Pitie10 in this context shows a more consistent performance
in both cases.

The results of our experiments show that the proposed
framework (applying a power 10 function to log-encoded
images) boosts the performance of the majority of the methods
we compare with. This is true both in terms of quantitative
metrics and image quality. The exceptions are the algorithms
of Pitié et al. [10] and Ferradans et al. [12]. These two methods
define the input images as probability density functions in
order to match them. This fact allows these methods to better
adapt for modifications present in the range of the input
images.

IV. EXPERIMENTS WITH HDR ENCODINGS

In this section, we color match a pair of images encoded
using different transfer functions: PQ, HLG and Log C ARRI
curves.

A. Dataset

The dataset we use for experiments is the one provided by
ARRI. This data contains HDR videos. The linear RAW data
is obtain by using ARRIRAW Converter [39]. We select three
different scenes, and for each scene we set a reference image
encoded with one of the 3 different options {PQ, HLG, Log
C} (a random Log C ARRI curve). Then, we build the data
by selecting all the possible combination pairs for each image
reference (total of 9 pairs). We add an extra pair comparing
two different Log C ARRI curves. Therefore, we have a total
of 10 image pairs.

B. Results and comparisons

We compare our method, described in Section II, with the
algorithms presented in the previous experiments in subsection
III-B: Reinhard et al. [8] (Reinhard), Kotera [14] (Kotera),
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TABLE II
RESULTS FROM THE COMPARISON AMONG 35 IMAGE PAIRS FOR: 1)) TWO LOG-ENCODED IMAGES, 2) REFERENCE LOG-ENCODED AND SOURCE

γ-CORRECTED, AND 3) REFERENCE γ-CORRECTED AND SOURCE LOG-ENCODED. IN THIS CASE, WE APPLIED POWER 10 TO THE INPUTS (IF NECESSARY)
FOR THE REST OF ALGORITHMS, EXCEPT GIL.

∆E∗
00 PSNR L CPSNR CID RMSE

µ µ̂ µ µ̂ µ µ̂ µ µ̂ µ µ̂

R
ef

lo
g

-S
rc

lo
g

Kotera10 11.919 8.285 20.771 22.503 19.286 20.719 0.487 0.403 0.148 0.092
Pitie10 3.790 4.074 25.961 25.871 25.377 25.332 0.197 0.188 0.058 0.054
Reinhard10 5.238 5.216 24.824 23.975 23.190 23.178 0.231 0.211 0.072 0.069
Xiao10 4.758 4.507 25.623 25.002 24.646 24.542 0.219 0.216 0.063 0.059
Ferradans10 9.885 7.208 18.695 19.915 18.318 19.464 0.419 0.316 0.145 0.106
Park10 4.137 3.843 26.858 26.733 25.626 24.901 0.204 0.170 0.057 0.057
Gil (as in previous Table) 4.057 3.644 27.027 26.689 25.665 25.379 0.193 0.155 0.057 0.054
Ours (as in previous Table) 3.400 3.022 27.446 27.158 26.587 26.479 0.161 0.135 0.050 0.047

R
ef

lo
g

-S
rc
γ

Kotera10 11.775 8.609 20.918 22.022 19.308 20.385 0.485 0.407 0.147 0.096
Pitie10 3.697 3.681 25.991 25.487 25.487 25.258 0.189 0.184 0.057 0.055
Reinhard10 5.379 5.082 25.034 25.086 23.259 23.384 0.235 0.216 0.072 0.068
Xiao10 4.905 4.565 25.556 25.031 24.599 24.649 0.227 0.205 0.064 0.059
Ferradans10 7.649 6.155 20.637 21.916 20.167 21.338 0.353 0.318 0.113 0.086
Park10 3.773 3.250 27.076 27.734 26.201 26.897 0.179 0.154 0.054 0.045
Gil (as in previous Table) 4.066 3.667 27.102 26.847 25.741 25.627 0.188 0.178 0.058 0.052
Ours (as in previous Table) 3.377 3.140 27.571 27.606 26.712 26.632 0.157 0.129 0.050 0.047

R
ef
γ

-S
rc

lo
g

Kotera10 11.564 8.588 20.466 22.328 19.164 20.831 0.480 0.379 0.148 0.091
Pitie10 3.721 3.895 26.064 25.783 25.477 25.508 0.183 0.165 0.056 0.053
Reinhard10 5.579 5.300 24.691 24.479 23.073 22.759 0.250 0.256 0.074 0.073
Xiao10 4.847 4.699 25.100 25.252 24.345 24.667 0.219 0.206 0.063 0.058
Ferradans10 6.280 6.010 22.433 22.802 21.903 22.115 0.311 0.312 0.084 0.078
Park10 6.262 4.023 26.168 26.592 24.278 24.857 0.269 0.192 0.080 0.057
Gil (as in previous Table) 3.863 3.476 27.197 26.672 25.889 25.341 0.173 0.162 0.054 0.054
Ours (as in previous Table) 3.444 3.313 27.395 26.922 26.563 25.684 0.152 0.144 0.050 0.052

Park et al. [29] Park10 GT Our method

CID = 0.460 CID = 0.142 CID = 0.127

Fig. 6. Example of applying power 10 function to Park et al. [29]. The input images are a log-encoded reference and a gamma-corrected source. The first
column presents the output of the original method from [29], the second shows the output of [29] applying power 10 (Park10), the third shows the GT, and
the last column shows our result.

Xiao and Ma [15] (Xiao), Pitié et al. [10] (Pitie), Ferradans et
al. [12] (Ferradans), Park et al. [29] (Park), and Gil Rodrı́guez
et al. [27] (Gil). The last method also considers the inputs
as log-encoded images. In order to compute the quantitative
results, we undo the non-linearity (since it is known) of the
resulting color matched image and the GT, and then apply a
γ correction of 1/2.2, as done in the previous experiments.
From the data in Table III, it is apparent that our method is
accurate when working with real data and common situations.

Figure 7 presents the image results, where we show the
GTs and our results after applying the tone mapping operator
(TMO) from [37]. The reference and the source are presented
without tone mapping, in order to appreciate the differences
between applying the different curves. As it can be seen in the
last column in Figure 7, our method recovers the colors and
appearance of the reference image, in different input situations.
We show for 3 different scenes (rows), and for each scene:
the reference (first column), the source (second column), the
GT (third column) and our result (last column). Notice that
on the last row, where the reference is PQ-encoded and the

source HLG-encoded, our result (last column) is not able to
completely recover the blue on the t-shirt on the left upper
corner. In our output, the blue appears brighter than in the GT.
This is due to the fact that no correspondences are available
in this particular hue, thus the recovery is not perfect.

V. CONCLUSION

In this paper we have presented a method for the color
matching of different image views encoded with unknown
non-linear curves. The method is based on the modification
of logarithmic-encoded images so that they behave as gamma-
corrected ones. In this way, we can color stabilize the images
by estimating a 4×4 matrix and a power law value. Our results
show that our method outperforms state-of-the-art algorithms
quantitatively and qualitatively. In a future work, we would
like to explore the more general case, when no content is
shared among the input images.
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Source (logC EI 800) Reference (HLG) GT Our result

Source (logC EI 800) Reference (logC EI 1600)

Source (PQ) Reference (logC EI 800)

Fig. 7. Examples with PQ and HLG. From left to right, source, reference, GT and our result. Each row represents a different comparison and scenario. The
GTs and our results are tone mapped using [37]. Images from ARRI [38]. In the case of PQ curve, we set up the absolute luminance of the display to 1000
cd/m2.

TABLE III
RESULTS SHOW MEAN (µ) AND MEDIAN (µ̂) AVERAGES OVER 10 PAIRS,

WHERE REFERENCE AND SOURCE IMAGES ARE ENCODED USING HLG, PQ
AND LOGARITHMIC CURVES. IN THE CASE OF PQ CURVE, WE SET UP THE

ABSOLUTE LUMINANCE OF THE DISPLAY TO 1000 cd/m2 .

∆E∗
00 PSNR L CPSNR CID RMSE

Kotera µ 3.344 32.505 30.567 0.110 0.045
µ̂ 4.117 30.379 29.061 0.114 0.052
µ 1.022 40.047 40.134 0.035 0.021Pitie
µ̂ 0.582 43.069 42.568 0.004 0.006

Reinhard µ 1.861 35.311 35.020 0.062 0.040
µ̂ 2.058 32.023 31.408 0.042 0.037
µ 1.891 32.965 32.789 0.061 0.032Xiao
µ̂ 2.066 30.379 30.244 0.054 0.033

Ferradans µ 4.820 24.692 24.624 0.183 0.073
µ̂ 3.865 25.364 25.485 0.145 0.052
µ 1.624 38.250 36.795 0.044 0.029Park
µ̂ 1.418 37.730 37.142 0.018 0.017
µ 1.775 36.086 35.636 0.068 0.029Gil
µ̂ 1.659 31.674 31.295 0.046 0.022
µ 0.310 48.324 47.649 0.002 0.005Ours
µ̂ 0.239 49.435 49.131 0.001 0.004
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[10] F. Pitié, A. C. Kokaram, and R. Dahyot, “Automated colour grading
using colour distribution transfer,” Computer Vision and Image Under-
standing, vol. 107, no. 1, pp. 123 – 137, 2007.

[11] J. Rabin, S. Ferradans, and N. Papadakis, “Adaptive color transfer with
relaxed optimal transport,” in IEEE International Conference on Image
Processing (ICIP), Oct 2014, pp. 4852–4856.

[12] S. Ferradans, N. Papadakis, G. Peyr, and J. Aujol, “Regularized Discrete
Optimal Transport,” SIAM Journal on Imaging Sciences, vol. 7, no. 3,
pp. 1853–1882, 2014.

[13] T. Pouli and E. Reinhard, “Progressive color transfer for images of
arbitrary dynamic range,” Computers & Graphics, vol. 35, pp. 67 –
80, 2011.

[14] H. Kotera, “A scene-referred color transfer for pleasant imaging on
display,” in IEEE International Conference on Image Processing (ICIP),
vol. 2, Sept 2005, pp. 5–8.

[15] X. Xiao and L. Ma, “Color Transfer in Correlated Color Space,” in
PACM International Conference on Virtual Reality Continuum and Its
Applications, ser. VRCIA. New York, NY, USA: ACM, 2006, pp.
305–309.

[16] ——, “Gradient-Preserving Color Transfer,” Computer Graphics Forum,
vol. 28, no. 7, pp. 1879–1886, 2010.

[17] R. M. H. Nguyen, S. J. Kim, and M. S. Brown, “Illuminant Aware
Gamut-Based Color Transfer,” Computer Graphics Forum, vol. 33, no. 7,
pp. 319–328, Oct. 2014.

[18] Y. Hwang, J. Y. Lee, I. S. Kweon, and S. J. Kim, “Color Transfer Using
Probabilistic Moving Least Squares,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2014, pp. 3342–3349.

[19] H. Gong, G. Finlayson, and R. Fisher, “Recoding Color Transfer as

Page 9 of 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

A Color Homography,” in Proceedings of the British Machine Vision
Conference (BMVC). BMVA Press, September 2016, pp. 17.1–17.11.

[20] H. Gong, G. D. Finlayson, R. B. Fisher, and F. Fang, “3D color
homography model for photo-realistic color transfer re-coding,” The
Visual Computer, pp. 1–11, 2017.

[21] Y.-W. Tai, J. Jia, and C.-K. Tang, “Local Color Transfer via Probabilistic
Segmentation by Expectation-Maximization,” in IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), 2005,
pp. 747–754.

[22] Y. Xiang, B. Zou, and H. Li, “Selective color transfer with multi-source
images,” Pattern Recognition Letters, vol. 30, no. 7, pp. 682–689, May
2009.

[23] Y. HaCohen, E. Shechtman, D. B. Goldman, and D. Lischinski,
“Non-rigid Dense Correspondence with Applications for Image
Enhancement,” ACM Transactions on Graphics (TOG), vol. 30, no. 4,
pp. 70.1–70.10, Jul. 2011. [Online]. Available: http://doi.acm.org/10.
1145/2010324.1964965

[24] J. Vazquez-Corral and M. Bertalmı́o, “Color Stabilization Along Time
and Across Shots of the Same Scene, for One or Several Cameras
of Unknown Specifications,” IEEE Transactions on Image Processing
(TIP), vol. 23, no. 10, pp. 4564–4575, Oct 2014.

[25] O. Frigo, N. Sabater, J. Delon, and P. Hellier, “Motion Driven Tonal
Stabilization,” IEEE Transactions on Image Processing (TIP), vol. 25,
no. 11, pp. 5455–5468, Nov 2016.

[26] J. Vazquez-Corral and M. Bertalmı́o, “Log-encoding Estimation for
Color Stabilization of Cinematic Footage,” in IEEE International Con-
ference on Image Processing (ICIP), 2016, pp. 3349–3353.

[27] R. Gil Rodrı́guez, J. Vazquez-Corral, and M. Bertalmı́o, “Color-matching
Shots from Different Cameras Having Unknown Gamma or Logarithmic
Encoding Curves,” in SMPTE Annual Technical Conference & Exhibi-
tion, 2017, pp. 1–15.

[28] Y. HaCohen, E. Shechtman, D. B. Goldman, and D. Lischinski, “Opti-
mizing Color Consistency in Photo Collections,” ACM Transactions on
Graphics (TOG), vol. 32, no. 4, pp. 85.1 – 85.9, 2013.

[29] J. Park, Y. W. Tai, S. N. Sinha, and I. S. Kweon, “Efficient and robust
color consistency for community photo collections,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2016, pp.
430–438.

[30] M. Xia, J. Y. Renping, X. M. Zhang, and J. Xiao, “Color Consistency
Correction Based on Remapping Optimization for Image Stitching,” in
IEEE International Conference on Computer Vision Workshops (IC-
CVW), 2017, pp. 2977–2984.

[31] W. Xu and J. Mulligan, “Performance evaluation of color correction
approaches for automatic multi-view image and video stitching,” in
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), June 2010, pp. 263–270.

[32] D. G. Lowe, “Object recognition from local scale-invariant features,”
in IEEE International Conference on Computer Vision (ICCV), vol. 2,
1999, pp. 1150–1157.

[33] D. Coffin, “Decoding raw digital photos in Linux,” http://www.
cybercom.net/∼dcoffin/dcraw/, 2010, accessed: 2010.

[34] G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference
formula: implementation notes, supplementary test data, and mathemat-
ical observations,” Color research and application, vol. 30, no. 1, pp.
21–30, 2005.

[35] I. Lissner, J. Preiss, P. Urban, M. S. Lichtenauer, and P. Zolliker, “Image-
Difference Prediction: From Grayscale to Color,” IEEE Transactions on
Image Processing (TIP), vol. 22, no. 2, pp. 435–446, 2013.

[36] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing (TIP), vol. 13, no. 4, pp. 600–612,
April 2004.

[37] P. Cyriac, D. Kane, and M. Bertalmı́o, “Optimized Tone Curve for In-
Camera Image Processing,” in IS&T Electronic Imaging Conference, vol.
2016, no. 13, 2016, pp. 1–7.

[38] S. Andriani, H. Brendel, T. Seybold, and J. Goldstone, “Beyond the
Kodak image set: A new reference set of color image sequences,” in
IEEE International Conference on Image Processing (ICIP), Sept 2013,
pp. 2289–2293.

[39] ARRI, “ARRIRAW Converter,” http://www.arri.com/camera/alexa/tools/
ar-riraw\ converter/, 2018, accessed 2018.

Page 10 of 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60




