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Abstract. Images captured under adverse weather conditions, such as
haze or fog, typically exhibit low contrast and faded colors, which may
severely limit the visibility within the scene. Unveiling the image struc-
ture under the haze layer and recovering vivid colors out of a single image
remains a challenging task, since the degradation is depth-dependent and
conventional methods are unable to handle this problem.
We propose to extend a well-known perception-inspired variational frame-
work [1] for the task of single image dehazing. The main modification
consists on the replacement of the value used by this framework for the
grey-world hypothesis by an estimation of the mean of the clean image.
This allows us to devise a variational method that requires no estimate of
the depth structure of the scene, performing a spatially-variant contrast
enhancement that effectively removes haze from far away regions. Exper-
imental results show that our method competes well with other state-
of-the-art methods in typical benchmark images, while outperforming
current image dehazing methods in more challenging scenarios.

Keywords: Image dehazing, Image defogging, Color correction, Con-
trast enhancement

1 Introduction

The effect of haze in the visibility of far away objects is a well-known physical
property that we perceive in different ways. For example, an object loses contrast
as its depth in the image increases, and far away mountains present a bluish tone
[8]. Haze is produced by the presence of suspended little particles in the atmo-
sphere, called aerosols, which are able to absorb and scatter the light beams.
Aerosols can range from small water droplets to dust or pollution, depending
on their size. Scientific models of the propagation of light under such conditions
began with the observation of Koschmieder [14]. He stated that a distant object
tends to vanish by the effect of the atmosphere color, which replaces the color of
the object. Consequently, Koschmieder established a simple linear relationship
between the luminance reflected by the object and the luminance reaching the
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observer. This linear relationship is based on the distance between the observer
and the object. From then on, the study of interaction of light with the atmo-
sphere as it travels from the source to the observer has continued growing as a
research area in applied optics [17, 16].

Restoring images captured under adverse weather conditions is of clear in-
terest in both image processing and computer vision applications. Many vision
systems operating in real-world outdoor scenarios assume that the input is the
unaltered scene radiance. These techniques designed for clear weather images
may suffer under bad weather conditions where, even for the human eye, dis-
cerning image content can represent a serious challenge. Therefore, robustly re-
covering visual information in bad weather conditions is essential for several
machine vision tasks, such as autonomous robot/vehicle navigation [10] or video
surveillance systems [32, 29]. Aerial and remotely sensed images, related to appli-
cations as land cover classification [34, 15], can also benefit from efficient dehazing
techniques.

As Koschmieder stated, the problem of restoring true intensities and colors
(sometimes referred to as albedo) presents an underlying ambiguity that cannot
be analytically solved unless scene depth data is available [23]. For this reason,
most of the previous approaches rely on physically-based analytical models of
the image formation. The main goal of these approaches is to estimate the trans-
mission, (or alternatively the depth) of the image to estimate the transmission of
the image, that describes the part of the light that is not scattered and reaches
the camera, and later on, to obtain the albedo based on the transmission. Al-
ternatively, depth can also be estimated. These approaches can be later divided
into multiple images ones [22, 18, 20, 19, 21], or single image ones [12, 6]. On the
other hand, there are also works that compute the albedo in the first place and
obtain a depth map as a by-product. In [30], Tan estimates the albedo by im-
posing a local maximization of contrast, while in [5] Fattal assumes that depth
and surface shading are uncorrelated. Unfortunately, both methods rely on the
assumption that depth is locally constant, and the obtained images suffer from
artifacts and are prone to over-enhancing.

Regarding all the previously stated, contrast enhancement of hazy images
seems to be a straight-forward solution for this problem. However, conventional
contrast enhancement techniques such as histogram equalization are not appli-
cable due to the spatially variant nature of the degradation. Fortunately, recent
research has presented more advanced contrast enhancement techniques that
can successfully cope with spatially inhomogeneous degradations such as the
one produced by haze. In this work, we rely on the perceptually inspired color
enhancement framework introduced by Bertalmio et al. [1]. We propose to re-
place the original grey-world hypothesis by a rough estimate of the mean value
of the haze-free scene. This value is softly based on Koschmieder statement [14].
A different modification of this hypothesis was already performed in previous
works [7, 33].

The rest of the paper is structured as follows. In the following section we
review recent methods for image dehazing. Next, we formulate the image de-
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hazing problem in a variational setting. Section 4 is devoted to experimental
results and comparison to other state-of-the-art methodologies. We end up in
section 5 by summarizing our approach and discussing possible extensions and
improvements.

2 Background and Related Work

Most of the previous work on image dehazing is based on solving the image
formation model presented by Koschmieder [14] that can be computed channel-
wise as follows

I(x) = t(x)J(x) + (1− t(x))A, (1)

where x is a pixel location, I(x) is the observed intensity, J(x) is the scene ra-
diance, corresponding to the non-degraded image, transmission t(x) is a scalar
quantity that is inversely related to the scene’s depth and is normalized between
0 and 1,, while A, known as airlight, plays the role of the color of the haze, which
is usually considered constant over the scene, and therefore in a channel-wise for-
mulation it is a scalar value. Solving Eq. (1) is an under-constrained problem, i.e.
there are a large number of possible solutions. To constrain this indeterminacy,
extra information in different forms has been introduced in the past. For exam-
ple, in [19] several instances of the same scene acquired under different weather
conditions are employed to obtain a clear image. The near infra-red channel is
fused with the original image in [27], and the work in [13] retrieves depth infor-
mation from geo-referenced digital models, while in [28] multiple images taken
through a polarizer at different orientations are used. Unfortunately, this extra
information is often unavailable, difficulting the practical use of these techniques.

Dehazing is particularly challenging when only a single input image is avail-
able. In this case, the majority of existing methods are also focused on solving
Eq. (1) by inferring depth information based on different means. In [4], assump-
tions on the geometry of hazy scenarios are made. Tarel et al. [31] estimate the
atmospheric veil (equivalent to the depth map) through an optimization proce-
dure in which they impose piecewise smoothness. The dark channel methodology
[12], probably the most successful technique to date, is based on the statistical
observation that haze-free images are colorful and contain textures and shad-
ows, therefore lacking locally the presence of one of the three color components.
On the contrary, hazy images present less contrast and saturation. As depth
increases and the haze takes over the image, the contrast and saturation further
decrease providing an estimate of the depth information based on which it be-
comes possible to invert Eq. (1), obtaining high-quality results. More recently,
Fattal [6] elaborates on a local model of color lines to dehaze images.

Several methods that are independent of an initial estimation of the scene
depth have also been devised. Tan [30] imposes a local increase of contrast in
the image and a similar transmission value for neighboring pixels. Fattal [5]
separates the radiance from the haze by assuming that surface shading and
scene transmission are independent. Nishino et al. [23] do not compute depth
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in an initial stage, but rather estimate it jointly with the albedo in a Bayesian
probabilistic framework.

3 Variational Image Dehazing

The majority of current dehazing algorithms are based on an estimation of the
image depth (or transmission). Therefore, these methods are susceptible to fail
when the physical assumptions underlying Eq. (1) are violated. This is a com-
mon phenomena both in real life, for example, when there is a source of light
hidden by the haze, and in virtually-generated images that add different types
of fog. Methods that do not estimate the model depth do not suffer from this
problem, but they usually result in over-enhanced images due to the special char-
acteristics of the degradation associated with haze. More conventional contrast
enhancement algorithms, such as histogram equalization, are not suitable ei-
ther. Fortunately, recent spatially-variant contrast enhancement techniques can
be adapted to perform well for image dehazing tasks. In the following, we develop
a variational framework for image dehazing that enforces contrast enhancement
on hazy regions of the image throughout an iterative procedure allowing us to
control the degree of restoration of the visibility in the scene.

3.1 Variational Contrast Enhancement

In 2007, Bertalmı́o et al. [1] presented a perceptually-inspired variational frame-
work for contrast enhancement. Their method is based on the minimization of
the following functional for each image channel I:

E(I) =
α

2

∑
x

(
I(x)− 1

2

)
+
β

2

∑
x

(I(x)− I0(x))2− γ
2

∑
x,y

ω(x, y)|I(x)− I(y)|, (2)

where I is a color channel (red, green or blue) with values in [0, 1], I0 is the orig-
inal image, x, y are pixel coordinates, α, β, γ are positive parameters and ω(x, y)
is a positive distance function with value decreasing as the distance between x
and y increases. This method extends the idea of variational contrast enhance-
ment presented by Sapiro and Caselles [26] and it also shows a close connection
to the ACE method [25]. Bertalmı́o and co-authors have later revealed connec-
tions between this functional and the human visual system: they generalized it
to better cope with perception results [24], and they established a very strong
link with the Retinex theory of color [3, 2].

The minimization of the image energy in Eq. (2) presents a competition
between two positive terms and a negative one. The first positive term aims at
preserving the gray-world hypothesis, by penalizing deviation of I(x) from the
1/2 value, while the second positive term prevent the solution from departing
too much from the original image, by restricting output values to be relatively
close to the initial I0(x). The negative competing term attempts to maximize
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the contrast. Focusing on this negative term of Eq. (2) we can observe a very
useful relation with dehazing methods. It can be written as:∑

x,y

ω(x, y)|I(x)− I(y)| =
∑
x,y

ω(x, y) (max(I(x), I(y))−min(I(x), I(y))) . (3)

We can now see that the contrast term is maximized whenever the minimum
decreases or the maximum increases, corresponding to a contrast stretching.
Notice that the first case, i.e., the minimization of local intensity values, is one
of the premises of a haze-free image, according to the Dark Channel prior [11].

3.2 Modified Gray-World Assumption

In the image dehazing context, the Gray World hypothesis implemented in Eq.
(2) is not adequate, since we want to respect the colors of the haze-free image,
not to correct the illuminant of the scene. Therefore, to approximately predict
which should be the mean value of a dehazed scene, we rely on the model of Eq.
(1), that we rewrite here in terms of the luminance of each channel:

Lj = Lj
0t + (1− t)Aj , (4)

where j ∈ {R,G,B}. By rearranging, taking the average of each term and as-
suming that L and t are independent, we arrive to:

mean(Lj
0) ·mean(t) = mean(Lj) + (mean(t)− 1) mean(Aj). (5)

Now, let us assume that the image presents regions at different depth distances,
therefore, the histogram of depth values will be approximately uniformly dis-
tributed. In this way, we can set mean(t) = 1

2 and approximate the previous
equation by:

mean(Lj
0)

2
≈ mean(Lj) + (

1

2
− 1) mean(Aj). (6)

Let us note again that the airlight A is a constant value for each channel, that
can be roughly approximated by the maximum intensity value on each channel,
since haze regions are usually those with higher intensity.. Thus, a reasonable
approximation for the mean value of the haze-free scene is given by:

µj = mean(Lj
0) ≈ 2 mean(Lj)−Aj . (7)

We then rewrite the energy functional as:

E(Ij) =
α

2

∑
x

(Ij(x)−µj)+
β

2

∑
x

(Ij(x)−Ij0(x))2−γ
2

∑
x,y

ω(x, y)|Ij(x)−Ij(y)|. (8)

To minimize the above energy we first need to compute its Euler-Lagrange
derivative. Close details about the computation of the variational derivatives of



6 Galdran, Vazquez-Corral, Pardo, Bertalmı́o

the different terms are given in [1], where the authors find that a minimizer of
(8) must satisfy:

δE(Ij) = α(Ij(x)− µj) + β(Ij(x)− Ij0(x))− γR(Ij)(x) = 0, j ∈ {R,G,B} (9)

where the function R(I) is a contrast enhancement operator:

R(I)(x) =

∑
y ω(x, y)s(I(x)− I(y))∑

y ω(x, y)
, (10)

and s is a smooth approximation of the sign function, that accounts for the first
derivative of the absolute value.

We can now apply a gradient descent strategy. To this end, we solve
δI

δt
=

−δE(I), being t the evolution parameter. For the case of the energy given by Eq.
(8), with the modified gray world assumption, after an explicit discretization in
time, we have:

Ijk+1 = Ijk(1−∆t(β + γ)) +∆t(βµj + γIj0) +∆t(ηR(Ijk)), j ∈ {R,G,B} (11)

The initial condition for this descent is the input image Ik=0 = I(x). The
computations of the operator R are reformulated in terms of convolutions and
computed using Fast Fourier Transforms. This brings a computational improve-
ment to the method, since the effort to compute expression (10) falls down from
O(N2) to O(N log(N)). Details of this argument for complexity reduction can
be found in [1].

4 Experimental Results

In this section we compare our proposed method versus current state-of-the-
art results. In recent years, very powerful algorithms for image dehazing have
appeared. When processing typical benchmark images, it is very hard to retrieve
more visibility or natural colors than these methods already do although our
method shows a competitive behavior in these images. However, when dealing
with more realistic images, in which the fog does not follow a linear model such
as Eq. (1) or the illumination is uneven, we have observed that the majority of
the state-of-the-art methods tends to create severe artifacts, while ours is still
able to dehaze these scenes without introducing this kind of corruption.

Let us also notice that, due to the difficulty to obtain ground-truth infor-
mation of hazy/haze-free images, evaluation of dehazing methods has usually a
subjective component. Quality of the results should be measured by the plausi-
bility of the restored colors, as well as the recovered visibility in far away areas of
the scene. To evaluate our results, we have run Eq. 11 with the following values:
α = β = 0.5, γ varied depending on the amount of enhancement we desired,
η was set to 0 unless otherwise stated, and the distance function implemented
was a Gaussian kernel with a standard deviation of 50 pixels. The time step was
always ∆t = 0.15, and we considered that a steady-state of the gradient descent
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. (a) New York image (input). (b) to (h): Result of processing with methods of:
(b) Fattal ’08 [5] (c) Tan. ’08 [30] (d) Kopf et al. [13] (e) Fattal ’14 [6] (f) He et al. ’11
[12] (g) Tarel et al. ’09 [31] (h) Result of our method.

was achieved as soon as the Mean Square Error between one iteration and the
next one falls below 0.02. In all the experiments, we observed convergence within
6 − 12 iterations. We have noticed that our method shows a strong robustness
to slight parameter tuning.

Figure 1 displays an image of the city of New York, typically used for bench-
marking of dehazing algorithms. Therein, our method is compared against the
works in [5],[30], [13], [6], [12] and [31]. We see that visibility of distant objects is
recovered by every method up to a reasonable degree. The very recent method
of Fattal [6] and the powerful Dark Channel method [12] are possibly the ones
recovering most vivid colors, although unfortunately they fail to recover the in-
formation underlying in the horizon (see upper right corner in Fig. (1e) and (1f)).
Also, the method by Tan [30] suffers of noticeable over-saturation artifacts.

Figure 2 illustrates the performance of our method on an open scene image
that contains a blue sky region. This is a challenging scenario for most dehazing
algorithms. In fact, some of the methods perform an initial classification of pixels
according to whether they belong to sky region or not. We see that only Kopf et
al. method [13] maintains a natural appearance of the sky area. Unfortunately,
this method needs geo-referenced data to work, and it is not usual to have
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. a) Mountain image (input) b)-h) Result of processing with methods of b) Fattal
’08 [5] c) Nishino et al. ’12 [23] d) Tan ’08 [30] e) He et al. ’11 [12] f) Kopf et al. ’08
[13] g) Tarel et al. ’09 [31] h) Result of our method.

this kind of input at hand. The rest of the methods, including ours, tend to
over-enhance sky regions. Regarding the elimination of the distant bluish haze
surrounding mountain peaks, we provide magnified detail in the right bottom
corner of each image in Fig. 2, where we can observe how only Kopf et al.
method, together with Fattal [5] and our algorithm are able to suppress haze
without introducing an unnatural blue in far-away regions.

The previous examples demonstrate how for typical images, existing algo-
rithms (including ours) can handle haze in an adequate manner, recovering visi-
bility up to a reasonable degree. On the other hand, each of the methodologies
restore chromatic information in a different way, although the majority of the
available techniques produce rather plausible colors. Differences in the perfor-
mance are subtle and only little details reveal whether a method is performing
better than another in particular regions of these particular images.

Unfortunately, little research has addressed the problem of image dehazing in
a more challenging and realistic scenario, such as the one depicted in Fig. 3. Let
us notice that most of the state-of-the-art methodologies rely on the previous
computation of a depth map of the scene. They usually resort to a physical
model of the image formation under haze and bad weather conditions, such as
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(a) (b) (c)

(d) (e) (f)

Fig. 3. a) Unevenly illuminated hazy image of the Thames river b)-f) Result of pro-
cessing with methods of b) Tarel ’09 [31] c) He et al. ’11 [12] d) Gibson et al. ’13 [9] e)
Nishino et al. ’12 [23] f) Result of our method.

Eq. (1). This model assumes illumination is constant in the scene. When this
assumption is violated, the airlight cannot be considered to be constant. The
result is a transmission underestimate or overestimate in unevenly illuminated
areas, and color distortions characterized by dark blue regions appear in the
restored images. This is the case for all the methods we tested, except for ours,
that does not compute any depth information prior to restoration. Thanks to the
attachment-to-data term, the strongly illuminated regions are handled properly,
and scene structure can be recovered in the rightmost part of the image without
introducing color distortion.

As a last example, let us notice that most works rely on the presence of
enough chromatic information in the scene so as to recover the depth structure.
When this chromatic information is weak or missing, the result is often an image
with unpleasant color artifacts. Our method operates in a channel-wise manner,
handling thus more robustly the lack of color cues in the input image, as can be
appreciated in Fig. 4.

5 Conclusions and Future Work

In this paper, we have proposed a variational framework that can be used for
image dehazing tasks. Extension of previous work on perceptual contrast en-
hancement allows us to devise a method that does not rely on an initial estimate
of the depth information in the scene. Initial results of our method are promising,
and comparable or better than state-of-the-art methods for typical benchmark
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(a) (b) (c) (d) (e)

Fig. 4. a) An image of the city of Paris, with a lack of chromatic information due to
haze in the scene b)-e) Result of processing with methods of b) He et al. ’11 [12] c)
Fattal ’14 [6] d) Nishino et al. ’12 [23] e) Result of our method.

images. Moreover, our algorithm performs well even in very adverse circum-
stances, such as unevenly illuminated scenes, where most methods are prone to
introduce artifacts.

We are currently developing various extensions of our methodology, such
as an image-fusion approach to image dehazing, in which the iterations of the
gradient descent are fused to give an improved version of the dehazed image.
Further work might consist on adding extra terms to the functional, for example,
Eq. (2) could be combined with a depth map coming from any of the algorithms
that are able to estimate 3D structure in the scene, to enforce denoising or
deblurring tasks in far away areas of the scene.
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