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Abstract: Hepatic steatosis, characterized by excess fat in the liver, is the main reason for discarding
livers intended for transplantation due to its association with increased postoperative complications.
The current gold standard for evaluating hepatic steatosis is liver biopsy, which, despite its accuracy,
is invasive, costly, slow, and not always feasible during liver procurement. Consequently, surgeons
often rely on subjective visual assessments based on the liver’s colour and texture, which are prone
to errors and heavily depend on the surgeon’s experience. The aim of this study was to develop and
validate a simple, rapid, and accurate method for detecting steatosis in donor livers to improve the
decision-making process during liver procurement. We developed LiverColor, a co-designed software
platform that integrates image analysis and machine learning to classify a liver graft into valid or
non-valid according to its steatosis level. We utilized an in-house dataset of 192 cases to develop and
validate the classification models. Colour and texture features were extracted from liver photographs,
and graft classification was performed using supervised machine learning techniques (random forests
and support vector machine). The performance of the algorithm was compared against biopsy results
and surgeons’ classifications. Usability was also assessed in simulated and real clinical settings using
the Mobile Health App Usability Questionnaire. The predictive models demonstrated an area under
the receiver operating characteristic curve of 0.82, with an accuracy of 85%, significantly surpassing
the accuracy of visual inspections by surgeons. Experienced surgeons rated the platform positively,
appreciating not only the hepatic steatosis assessment but also the dashboarding functionalities for
summarising and displaying procurement-related data. The results indicate that image analysis
coupled with machine learning can effectively and safely identify valid livers during procurement.
LiverColor has the potential to enhance the accuracy and efficiency of liver assessments, reducing the
reliance on subjective visual inspections and improving transplantation outcomes.

Keywords: mobile app; colour and texture analysis; liver assessment; organ transplantation;
hepatic steatosis

1. Introduction

High organ quality is key to a successful transplant outcome. Unfortunately, assessing
organ quality is a challenging task, and there is currently no practical evaluation method
available to help the surgical team decide whether to accept or discard an organ. In the
case of the liver, hepatic steatosis (HS) is frequently encountered during procurement
surgery [1], and it is the main reason for declining the donor’s liver due to the increased
risk of postoperative complications [2–6].

Hepatic steatosis is characterised by increased fat accumulation in the liver cells. It
is the most prevalent of all liver disorders, affecting approximately 30% of the general
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population [7]. The disease shows few or no symptoms, which makes it difficult to diagnose
until it presents complications. In the context of transplantation, HS in the donor is a serious
problem because steatotic livers are vulnerable to preservation damage, resulting in a higher
risk of early allograft dysfunction and primary nonfunction [5,8]. Liver biopsy is the gold
standard for evaluating HS, but it is invasive (hence, it can damage the organ), costly, slow,
and not always available during liver procurement [7]. Moreover, it only samples a small
fraction of the organ and, since HS is often unevenly distributed throughout the liver, there
is the potential for significant sampling error [9]. For these reasons, in practice, the decision
to use or discard the organ is based on the surgeons’ visual assessment (colour and texture)
of the liver during procurement [6,10,11]. Fatty livers exhibit some degree of yellowness
and a coarser texture, which can be observed macroscopically in the graft without the need
for imaging tests. While this visual inspection is fast, it is subjective and highly error-prone,
relying heavily on the surgeon’s experience [11,12]. In cases of doubt, clinicians tend to err
on the side of caution and discard the liver, despite organ shortages and growing waiting
lists. It is estimated that around 50% of the livers discarded based on visual assessment
could have been used for transplantation if an accurate, objective evaluation had been
performed [10,13]. This situation has prompted an urgent need to develop a reliable, cost-
effective, and fast method to support surgeons in their decision-making process regarding
the acceptance or rejection of liver grafts, thereby avoiding the unjustified loss of organs.

Computer tomography, magnetic resonance imaging, ultrasound, and spectroscopy
have been explored for assessing HS, albeit with limited success in the context of liver
transplantation [11,14–16]. Some studies have evaluated the use of photographs to assess
steatosis, either from biopsy samples [17] or directly from the liver graft itself [18,19].
Cesaretti et al. [18] developed a texture-based support vector machine (SVM) classification
algorithm on a cohort of 56 liver grafts, achieving an accuracy of 89% when combined with
donor data. However, the donor characteristics of their transplantable livers significantly
differed from the non-transplantable ones, which suggests a potential representation bias in
the learned model, and it is unclear whether their algorithm may generalise well. Similarly,
Ugail et al. [19] combined pre-trained deep learning networks with various classifiers to
discriminate between valid and non-valid livers. They report accuracies of up to 99.6%.
However, they split the data into training and test sets at the feature level rather than at
the donor level, which suggests a potential data leakage. Nonetheless, these studies show
the growing interest in rapidly and accurately assessing liver quality at the point of organ
procurement to safely expand the donor pool.

Our study aimed to present and evaluate LiverColor, a software-based platform that
encompasses a new diagnostic method for assessing HS using colour image processing
coupled with machine learning on standard photographs of livers.

2. Materials and Methods

We used an agile co-design approach to develop LiverColor, involving three key
stakeholder groups: the research team (comprising engineers and clinicians), the target
user group (including transplant teams and other healthcare professionals), and the soft-
ware development team. Together, these stakeholders shaped the design of LiverColor,
which includes 4 main interrelated components: (1) the database and repository of images
and clinical data; (2) the mobile application; (3) the image processing and data analysis
tools based on machine learning; and (4) the web portal application. We used extreme
programming (XP) as an agile software development methodology [20]. It is based on a set
of rules and good practices for software development in highly changing environments,
and it is focused on continuous feedback between the development team and the user (the
transplant clinicians and nurses in our case). Only open-access software was used for the
development of LiverColor.
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2.1. Database and Repository

Data were collected by clinicians from Vall d’Hebron University Hospital and used
by the guidelines set by the hospital’s Ethical Research Committee (CEIC) and the current
legislation (Organic Law 15/1999). The in-house dataset consisted of 192 cases from brain-
dead donors. All pictures were taken by surgeons in a well-lit operating room with the
surgical light switched off, using mobile phones equipped with (at least) a 12-megapixel
camera and high-end optics, features commonly available in today’s latest-generation
mobile phones. To ensure colour calibration, a sterilised plastic grey card was placed
next to the liver. For each liver, up to 5 photographs were taken: two from each lobe
(before and after surgical biopsy) and an additional one after cold organ perfusion (i.e.,
back-table procedure). In total, 362 photographs were obtained. All livers underwent two
separate tru-cut needle biopsies, one for each lobe, to determine the degree of steatosis.
Figure 1 shows two examples of images from the training dataset, with one depicting a
liver with HS > 30% (Figure 1a) and another showing a case with HS < 30% (Figure 1b).
Demographic information about the subjects (e.g., sex, age, and body mass index) and
biochemical variables, -aspartate aminotransferase (AST), alanine transaminase (ALT),
gamma-glutamyl transferase (GGT), and bilirubin- were also recorded. Table 1 summarises
baseline characteristics of the donors.

Table 1. Donor data. Statistics are expressed in median values (Q1–Q3) for continuous variables
and absolute numbers (percent) for categorical variables. AST: Aspartate AminoTransferase; ALT:
Alanine Transaminase; GGT: Gamma-Glutamyl Transferase.

Donors’ Characteristics n = 192

Age (years) 62 (50.25–71.75)
Male 120 (62.5)
Body mass index (kg2/m) 27.1 (24.01–30.3)
AST (IU/L) 37.00 (21.00–66.00)
ALT (IU/L) 26.00 (16.00–57.50)
GGT (IU/L) 42.00 (22.00–82.75)
Bilirubin (mg/dL) 0.5 (0.30–0.71)
Cause of death

Stroke 78 (45.35)
Head trauma 23 (13.37)
Anoxia 40 (23.26)

Other 31 (18.02)
Discarded for liver transplantation 53 (27.6)

Due to steatosis >30% by surgeons’
point of view 26 (13.54)

Due to other causes 27 (14.06)
Steatosis > 30% by histology 14 (7.3)
Steatosis > 15% by histology 53 (27.6)

All data are managed through the Firebase platform, which provides different services
for the development of web and app applications, including the following:

• User authentication;
• Registration, manipulation, and extraction of data (database);
• Configuration of data access permissions;
• Registration, manipulation, and reading of images and files (repository);
• Configuration of access permissions to images and files;
• Website hosting;
• Data encryption.
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Figure 1. Examples of images in the training dataset: (a) liver with hepatic steatosis > 30% and
(b) liver with hepatic steatosis < 30%, as quantified by biopsy. The grey card that is visible next to the
liver ensures colour balance.

2.2. Mobile Application

The mobile app allows for easy storage and real-time analysis of data and images from
donors’ livers. It includes the following functionalities:

• Log in;
• Management of user information;
• Creation of new cases;
• Registration of donor’s data;
• Registration of the liver viability according to the surgeon;
• Registration of biopsy results;
• Image acquisition;
• Image calibration and analysis (see Section 2.3);
• Management of cases (delete, archive, etc.).

All these functionalities have been developed considering the demanding environment
in which the app will be used. For the medical team, organ procurement is stressful due to
the time pressure and the critical impact of their decisions on the recipient’s life expectancy.
Consequently, it is important to build a robust application that (1) is fast and easy to use,
minimising any elements that may confuse, loss of data, loss of time, or human error;
(2) ensures privacy and data protection. For this, data are encrypted both in their transfer
and storage, adding double encryption on the client side to avoid the traceability of the
data if third parties gain access to the database.

2.3. Image Processing and Data Analysis Tools

The analysis includes image calibration, feature extraction from the liver region, and
finally classification using machine learning. Image analysis and classification models were
implemented using open-source libraries in Python v3.11.4.

2.3.1. Image Calibration and Feature Extraction

Mobile phones typically represent and display intensities in an sRGB colour space.
Thus, to recover the original linear intensity response from the photographs, the gamma
encoding is reversed by raising each pixel value to the power of 2.2 [21]. After this step,
the image is calibrated to mimic acquisition under uniform white lighting conditions,
using the grey card colour as a reference. Subsequently, the liver is segmented from the
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calibrated image using a fully automatic convolutional neural network based on the nn-
Unet architecture [22]. Given that HS may not be homogeneous, we divide the liver into
several randomly selected non-overlapping patches rather than analysing the entire organ.
The number and size of these patches depend on the area of the liver in the photograph.
On average, each liver is divided into 20 patches, with a range of 15 to 25 patches, each
measuring 80 × 80 pixels, within a range of 60 × 60 to 120 × 120 pixels. Using patches has
the added advantage of accelerating computational time. Patches with specular highlights
are identified using luminance thresholding [23]. Specifically, the mean luminance of the
patch is compared with the interquartile range of the liver’s luminance values. If the
mean luminance of the patch falls outside this range, the patch is excluded from further
processing and replaced with another randomly selected patch that meets the criteria.
Colour and texture features are computed from the patches. For the colour features, we
use the histograms of the L*a*b* intensities. In the L*a*b* colour space, a* and b* are
chromaticity axes. The a* indicates the green-red component colour (with negative a*
values towards green and positive towards red), whereas the b* represents the blue-yellow
component (with negative values towards blue and positive towards yellow). The opponent
colour model is well-suited for our application because steatotic livers are less red and have
a yellow undertone. For texture features, we use histograms of local binary patterns (in the
L*a*b* colour space) due to their ability to describe local texture [24].

In addition to the colour and texture features extracted from the image, LiverColor
allows for the inclusion of donor data (age, sex, body mass index, AST, ALT, GGT, and
bilirubin) to be considered for the prediction.

2.3.2. Training and Validating the Classification Model

LiverColor provides various trained models, with different types of machine learning
models (SVM and random forests), different training images (pre-biopsy and after per-
fusion), and different parameters (HS threshold at 15% and 30% and using only image
features or combining these with clinical data). If the biopsy result of the liver exceeds
the HS threshold, the ground-truth label assigned to the organ is “non-valid”; otherwise,
it is labelled as “valid”. We used nested cross-validation, with an outer cross-validation
loop to split the data into training and test folds (70% and 30%, respectively), and an inner
loop (90% and 10%) in combination with grid-search to select the optimal hyperparameters.
Training and test data partition was conducted at the donor level (rather than at the patch
level) to avoid data leakage, and it was random stratified (i.e., the proportion of the different
classes in the training dataset was kept constant) to combat covariate shift due to class
imbalances in the data. Moreover, cost functions for the classifiers were weighted inversely
proportional to the corresponding class frequency to address class imbalance.

During inference, each patch is classified by the trained machine learning model as
either valid (HS ≤ threshold%) or non-valid (HS > threshold%). A final classification
for each liver is determined based on the proportion of non-valid patches: if a specified
percentage of the patches (default value set at 20%) in the organ are classified as non-valid,
the entire liver is estimated as non-valid; otherwise, it is considered as valid.

The classification performance was evaluated by predicting the classes of all livers in
the test dataset (using the classifier that was trained on the training dataset) and comparing
the predictions against the ground-truth class labels of the test dataset. The average of
the accuracies obtained from the outer cross-validation loop was considered to be the
generalisation performance. In addition to accuracy, precision, and recall, we evaluated
the classification performance by computing the receiver operating characteristic curve
(ROC) and its area under the curve (AUC). Results are reported as point estimates and their
associated 95% confidence interval (CI).

We compared LiverColor’s performance against the standard of care. Transplant
surgeons, blind to LiverColor predictions, were asked to provide a qualitative assessment
of the HS in the test dataset.
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2.4. Web Portal

From the web portal, the administrator can manage users and monitor their activity, vi-
sualise and analyse the cases, register new pre-trained machine learning models, and obtain
key performance indicators of the models in use. More specifically, the administrator can:

• Create, edit, and delete users;
• Visualise statistics of the cases registered by user and by centre;
• Download data in csv format;
• Visualise, manage, and filter cases;
• Register new machine learning models;
• View behaviour and performance statistics for each of the models in use.

2.5. Data Flow and Backend Architecture

Figure 2 shows the data flow in the application, that is, how data are passed along
through the app from the launch to display, and how that is structured.
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We used Flutter and Dart for the front-end, and Flask for the backend engine to
deploy the machine learning models. Flutter is an open-source development framework
for building cross-platform native mobile applications, with Dart as its client-optimised
programming language. In contrast, Flask is a lightweight Python backend framework for
web applications.

Figure 3 depicts the backend architecture. It contains two application programming
interfaces (APIs) for communication between the client, the database (DB), and the com-
putation engine. The client can only communicate via HTTPS with the Firebase APIs
and the LiverColor API. Firebase Authentication, which is the service for user authentica-
tion, encrypts the user data and leverages industry standards such as OAuth 2.0 (for user
authorisation and access control to the data) and OpenId Connect (for authentication).

For data storage, LiverColor uses Firestore, the non-relational cloud database of
Firebase. Firestore automatically encrypts all data using the 256-bit Advanced Encryption
Standard, and the encryption keys themselves are encrypted with a set of regularly rotating
master keys. In addition, in the treatment of sensitive data, the encryption system by the
server (provided by Firebase) is combined with a client-side encryption and decryption
system, to anonymise data and avoid their traceability. Data are transparently decrypted
when read by an authorised user.
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2.6. LiverColor’s Evaluation

For the platform’s evaluation, test procedures were defined in three steps: (1) testing
of each individual module (i.e., access to repository, mobile application, image and data
analysis, web portal), (2) system test to verify the integration of each module within the
platform, and (3) functional test to assess the overall system performance, in an operational
environment, including the assessment of the tools usage. Classification performance was
evaluated as explained in Section 2.3.2. To assess the impact of gamma correction and colour
calibration (Section 2.3.1) on classification performance, we conducted experiments without
applying these corrections under two scenarios: (a) using the original images and (b) using
modified images with varied ambient light to simulate different lighting conditions.

We assessed the app’s usability through a thorough, scenario-based summative evalu-
ation of user–platform interactions, employing heuristic analysis [25] and a mixed methods
approach [26]. It involved collecting quantitative data to measure specific metrics (e.g.,
accuracy of the classification and completion times) and qualitative data, including user
feedback and opinions. A/B testing was applied to determine the effect of various design
optimisations. User experience was evaluated by a panel of experts (nine experienced
transplant surgeons) using the mHealth app usability questionnaire (MAUQ) [27]. The
questionnaire consists of 18 statements about the ease of use and satisfaction, system
information arrangement, and usefulness, and an open “Additional comments” section.
Responses to the positive statements range from 1 (strongly disagree) to 7 (strongly agree).
To determine the usability of LiverColor, we calculated the average of the responses to all
statements. The higher the overall average, the higher the usability of the app.

3. Results

Figures 4–7 illustrate the developed app and web portal. The mobile app works on
any device, whether Android or iOS, and the web portal can be used from a browser or a
desktop application.
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Figure 7. Shapley additive values for the metadata. Each liver case is represented by a single dot on
each feature row. The colour indicates the relative attribute values of the feature, with blue indicating
high numerical values and green indicating low numerical values. The horizontal axis represents the
Shapley additive values for a particular feature displayed on the vertical axis. Positive values indicate
that the feature contributes positively to the model prediction for that liver case, while negative
values indicate a negative contribution.

3.1. Mobile Application

Figures 4 and 5 show some screenshots of the mobile application. After logging in,
users can create a new case or access existing ones in their file system. When creating
a new case, users take a picture of the liver and enter the donor’s data. Users can also
include the percentage of HS estimated by the surgeon (from visual inspection) and the
HS estimation according to the biopsy. Among the donor’s data that can be specified,
there is the subject’s demographics: sex, age, and body mass index; if steatosis has been
confirmed by ultrasound; and biochemical variables: aspartate aminotransferase (AST),
alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), and bilirubin. Users
can also specify the cause of death, the need for adrenaline, and the number of days that the
donor was in the intensive care unit. When users select “Compute Analysis”, the app runs
the HS classification algorithm (Section 2.3). Users can include the donor’s demographic
and biochemical variables for the prediction (Figure 4b).
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3.2. Image Processing and Data Analysis Tools

From the 362 liver photographs, 7240 patches were extracted and analysed as described
in Section 2.3. We obtained the best results in terms of area under the curve (AUC) when
combining the image-based features (i.e., colour and texture) with the donor’s data using
the random forest classifier and the HS threshold at 15%, achieving an AUC = 0.82 (95% CI:
[0.74, 0.89]), with 85% of accuracy (95% CI: [80%, 90%]), 92% precision (95% CI: [87%, 95%]),
and 89% recall (95% CI: [85%, 93%]), as seen in Figure 6. The clinical variables that had the
greatest impact on the model’s predictions, ranked by mean decrease in impurity, were
ALT, BMI, AST, and GGT. The impact of the donor data on the prediction of the model
using SHAP values is shown in Figure 7. For the SVM classifier, the accuracy was 76% (95%
CI: [70%, 82%]), with 79% for precision (95% CI: [76%, 82%]), and 94% for recall (95% CI:
[87%, 97%])). For both the random forest and SVM classifiers, AUC decreased up to 6%
when not using clinical donor data. When setting an HS threshold at 30%, the number of
non-valid livers significantly decreases (from 53 to 14), which hinders performance (AUC
was near 0.65 despite larger accuracy than with threshold 15%). Without gamma correction
and colour calibration, classification performance decreased to an accuracy of 83% (95% CI:
[78%, 88%]) and an AUC of 0.79 (95% CI: [0.71, 0.87]) on the original images, and dropped
to 81% (95% CI: [76%, 87%]) and an AUC of 0.74 (95% CI: [0.66, 0.82]) on the distorted
images. We also obtained performance results when working in the RGB colour space
instead of the L*a*b* space. However, performance was lower and not reported here.

Surgeons’ assessment of HS achieved lower performance than LiverColor. For HS
threshold at 15%, on average, their accuracy was of 73% (95% CI: [65%, 81%]), with
51% precision (CI: [40%, 62%]), and 68% recall (CI: [55%, 81%]), which underscores the
significant improvement in classification accuracy achieved by LiverColor in comparison
to the surgeons (McNemar’s test with p-value < 0.001). For HS threshold at 30%, surgeons’
accuracy was 86% (CI: [80%, 92%]) but with 29% precision CI: [20%, 38%]), and 64% recall
(CI: [55%, 73%]).

The computational cost of the classification is less than 3 s on a standard laptop
computer and less than 4 s on a state-of-the-art smartphone.

3.3. Web Interface

Figures 8 and 9 show some screenshots of the web portal interface. The web portal
empowers administrators with the ability to track user activity, visualise and analyse
registered cases, register new machine learning models, and access key performance
indicators for the models in active use.

3.4. User Experience

Study participants provided responses to all the statements on the MAUQ question-
naire. Scores on all items were high, ranging from 5 to 7 (maximum), with an average
scoring of 6.6. Four out of the nine participants filled the “Additional comments” section,
where they valued not only the functionalities related to the assessment of HS, but also
the dashboarding to summarise and display procurement-related data. Three participants
commented that such a dedicated tool could be particularly beneficial for less experienced
surgeons, with two of them highlighting its potential to reduce surgeon’s stress. One
participant indicated that not having to use the grey colour card would be an asset to
the app.
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4. Discussion

Our preliminary results show that LiverColor’s performance in predicting HS > 15%
is significantly higher than that of the surgeon’s (85% vs. 73% in accuracy, 92% vs. 29% in
precision, 89% vs. 64% in recall).

Comparing with the literature, Adam et al. [2] found that even highly specialised
liver procurement surgeons had an accuracy rate of no more than 70% in severe steatosis
cases, with positive predictive values of 71%, 46%, and 17% for severe, moderate, and mild
steatosis, respectively. Additionally, Yersiz et al. [10] demonstrated that liver transplant
surgeons often struggle with accurate classification of moderate and severe steatosis (22.2%
and 0%, respectively, in their study of 201 cases). In our study, out of the 26 livers discarded
by the surgeons due to their estimate of HS > 30%, 17 (65.3%) were incorrectly discarded,
as biopsy results confirmed that HS was actually less than 30%. Furthermore, among the
192 cases, surgeons failed to identify five cases wherein histology indicated that HS > 30%.
In contrast, on average, LiverColor overestimated HS in nine cases and underestimated it
in five. The results suggest that such a technology could increase donor liver utilisation
(i.e., reduce organ waste) and, consequently, facilitate access to liver transplantation, thereby
reducing waiting list mortality.

Although some studies have used liver photographs to assess HS [18,19], to the best
of our knowledge, we are the first to present a clinical decision support platform for liver
graft assessment. Our platform, implemented both as a cloud-based and a stand-alone
application, includes four interrelated components: (1) the database and repository of
images and clinical data; (2) the mobile application; (3) the image processing and data
analysis tools based on machine learning; and (4) the web portal application. For the image
processing pipeline, and in contrast to [18,19], LiverColor includes colour calibration and
gamma correction, which improves robustness to lighting conditions. Moreover, LiverColor
uses colour features in the L*a*b* colour space, where colours are separated into distinct
axes, thereby enabling more precise differentiation of the yellow hues characteristic of
steatotic livers.

Since there are no publicly available databases of liver photographs, benchmarking our
classifier tool poses a significant challenge. LiverColor’s accuracy in predicting HS > 30%
is 90% (vs 89% in [18] and 99.6% in [19]) with an AUC of 65%, but our low number of cases
with HS > 30% (n = 14) makes these results less reliable. On the other hand, LiverColor’s
accuracy in predicting HS > 15%, a more challenging task according to surgeons, is 85%
with an AUC of 0.82. Cesaretti et al. [18] used an SVM classifier to predict HS > 30% from
texture features and donor data in a balanced cohort of 54 cases. They achieved an accuracy
of 89% but do not provide a ROC analysis or AUC. On the other hand, Ugail et al. [19] used
deep learning to extract features followed by an SVM classifier to predict HS > 30% in a
nearly balanced cohort of 879 cases. They achieved an accuracy of 99.6% with AUC = 0.99.
However, they split the data into training and test sets at the feature level rather than at the
donor level, which suggests a potential data leakage causing overfitting.

LiverColor performs best when using both imaging and clinical data features to predict
HS. According to the mean decrease in node impurity in the random forest classifier, the
most influential variables are ALT, BMI, AST, and GGT. These variables also ranked highly
when computing the SHAP values. Clinical studies have demonstrated their utility as
biomarkers in the diagnosis of HS [28,29].

From the classification results, we conclude that LiverColor provides a non-invasive,
real-time, and accurate assessment of HS in an organ procurement setting. Moreover, it is a
flexible tool, allowing for easy incorporation of new descriptors and offering the potential
to include assessments of other organs, such as the kidney.

The development of LiverColor followed a participatory design approach, where the
potential users of the app took part in all phases of the design. In particular, LiverColor
was extensively validated by several transplant surgeons. They highly appreciated the
features provided by the platform, not only its HS assessment functionality but also the
dashboarding to summarise and display procurement-related data. Results obtained
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from the usability test support the launch of upcoming releases of this application to be
implemented in real scenarios. Furthermore, clinicians indicated the future positive impact
that such a tool may have in the decision-making of organ acceptance, reducing the stress
of the transplant team and optimising their work. Since HS is often overestimated by
surgeons, our platform could improve the liver donor pool utilisation by avoiding the
unnecessary discard of viable organs, thus reducing waiting lists and saving lives.

Thus, although the implemented functionalities are still under improvement and fur-
ther clinical validation is required, we believe that this model can serve as a steppingstone
to develop tools that can be incorporated into the clinical routine of organ procurement.
Its integration into mobile and web platforms enhances accessibility, establishing it as a
versatile tool for clinicians across various healthcare infrastructures. Its application spans
from pre-operative assessments in transplant centres to intra-operative support, delivering
real-time, objective evaluations for surgeons. Furthermore, it can function as a triage tool
in emergency settings, offering crucial rapid assessments of liver viability. Moreover, in
the era of ex-situ organ machine perfusion, it is crucial to identify which grafts will benefit
from this procedure to justify its high cost [30].

The generalisability of the findings from this study is potentially limited due to several
factors. Firstly, the study’s small sample size, especially the low number of livers with
HS greater than 30%, and the absence of livers with HS over 60% (severe HS), may not
accurately represent the broader population of liver grafts. These limitations can affect the
robustness of the results, making it difficult to confidently apply the findings to all clinical
scenarios involving liver transplants. Secondly, the study was conducted as a single-centre
investigation, which may introduce biases related to the specific practices, protocols, and
patient demographics of the institution. Validation on external datasets from multiple
centres is crucial to determine whether the model performs consistently across different
clinical environments and with diverse patient populations. Further, although the platform
demonstrated good accuracy and AUC in the current study, the true performance can only
be confirmed through larger-scale studies. These studies should encompass a wider range
of liver conditions and be conducted in varied geographical and institutional settings. Such
comprehensive validation is essential to ensure the platform’s effectiveness and reliability
in real-world clinical applications, thereby enhancing its clinical utility and broadening
its adoption in liver transplant assessments. Lastly, another limitation is that we only
considered macroestatosis. Microsteatosis is considered to have less negative impact for
the outcome of liver transplantation, but some studies suggest that it could be interesting
to quantify both types [31,32].

In conclusion, our study shows that colour and texture image analysis coupled with
machine learning can help to safely identify valid livers during procurement. We developed
LiverColor, a modular co-designed platform that provides a reliable, fast, easy, and cost-
effective way to assess the donor’s liver for transplantation.
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