
NamedCurves: Learned Image Enhancement via
Color Naming

David Serrano-Lozano1,2, Luis Herranz3, Michael S. Brown4, and
Javier Vazquez-Corral1,2

1 Computer Vision Center, Barcelona, Spain
2 Universitat Autònoma de Barcelona, Barcelona, Spain

3 Universidad Autónoma de Madrid, Madrid, Spain
4 York University, Toronto, Canada

{dserrano,jvazquez}@cvc.uab.cat, luis.herranz@uam.es, mbrown@eecs.yorku.ca
namedcurves.github.io

ΔE = 3.82

ΔE = 6.68ΔE = 15.60

DeepLPF

Ours

Orange-Brown-Yellow Achromatic

Pink-Purple Red

Green Blue

Input

Ground truth

Fig. 1: Column 1 displays an input image corrected by a photo-editing expert (denoted
as ground truth). Our proposed method decomposes the image based on color naming
and learns a tone-curve correction to mimic the expert’s style (shown in columns 2-3).
Results comparing the input, our results, and the approach by [21] are reported in
terms of the color distance metric ∆E00.

Abstract. A popular method for enhancing images involves learning
the style of a professional photo editor using pairs of training images
comprised of the original input with the editor-enhanced version. When
manipulating images, many editing tools offer a feature that allows the
user to manipulate a limited selection of familiar colors. Editing by color
name allows easy adjustment of elements like the "blue" of the sky or
the "green" of trees. Inspired by this approach to color manipulation, we
propose NamedCurves, a learning-based image enhancement technique
that separates the image into a small set of named colors. Our method
learns to globally adjust the image for each specific named color via tone
curves and then combines the images using an attention-based fusion
mechanism to mimic spatial editing. We demonstrate the effectiveness of
our method against several competing methods on the well-known Adobe
5K dataset and the PPR10K dataset, showing notable improvements.

Keywords: Color enhancement · Image enhancement · Color naming

ar
X

iv
:2

40
7.

09
89

2v
1

 [
cs

.C
V

]
 1

3
Ju

l 2
02

4

namedcurves.github.io

2 D. Serrano-Lozano et al.

1 Introduction

Color plays a vital role in photography, enhancing focal points, evoking emo-
tions, and enriching storytelling. Whether through vibrant hues or subtle tones,
understanding the importance of colors is crucial for photographers seeking to
evoke specific responses. Despite significant advancements in camera technology,
amateurs and professionals still often resort to post-capture image enhancement
to enhance an image’s quality. However, manual enhancement can be challenging
for those lacking expertise, time, or a well-developed aesthetic sense.

A potential solution to avoid manual adjustment is to learn a deep net-
work model that can mimic the image editing style of a skilled photographer
or colorist. These methods leverage a dataset of image pairs with the original
and corresponding artist-edited images. It is interesting to consider the tools
provided to the artists for performing the image editing. Many photo editing
software applications (e.g., Adobe Photoshop [1]) provide users with the ability
to manipulate the image based on a small set of fixed colors (e.g., red, green,
yellow, orange, blue, purple). Interestingly, the predefined colors selected by
software tools are similar to those linguists have found to be universal across
languages [6], a research topic often referred to as color naming.

Contribution: We propose to leverage the use of color naming decomposition
for image enhancement. In particular, we introduce NamedCurves, a learning-
based image enhancement method that decomposes images into color names and
estimates a tone curve in the form of smooth, differential Bezier curves (see Fig-
ure 1). This is followed by an attention-based fusion scheme that combines the
images modified by the individual color curves, simulating local image editing.
We compare our method with several state-of-the-art image enhancement meth-
ods on the MIT-Adobe-5K and PPR10K datasets. Our color naming scheme
outperforms competing methods in terms of PSNR and ∆E.

2 Related Work

Related works are discussed for color naming and data-driven image-based en-
hancement methods that model professional editing styles.

2.1 Color Naming

Color naming is crucial for product designing, photography, and vision research
[3, 24, 28, 35]. Berlin and Kay [6] conducted a study on the basic color lexicon
across various languages and discovered universal semantics. Their seminal anal-
ysis showed that the evolution of basic color vocabularies is influenced by visual
physiology, which limits the possible composite categories to a small number
of those. The 11 color names found that most societies and cultures share are:
orange, brown, yellow, white, grey, black, pink, purple, red, green and blue.

NamedCurves: Learned Image Enhancement via Color Naming 3

W
h

it
e

G
re

y
B

la
c
k

Red

Brown

Orange Yellow

Green

Black

Blue

Purple

Pink

White

Fig. 2: Van de Weijer et al. [31] color names grouped in the Munsell color array. The
color names are orange, brown, yellow, white, grey, black, pink, purple, red, green and
blue.

º

Orange Brown Yellow

Black Gray White Red

Pink Purple

Green Blue

Fig. 3: Van de Weijer et al. [31] color naming method applied pixel-wise to the top-left
image. The other 11 images show the 11 probability color names maps. Each color
is displayed with a different map to aid visualization. Note that some linguistic color
names share approximately the same hue and only differ in intensity— e.g., pink and
purple. As tone curves are defined for all the intensity range we group: orange-brown-
yellow, pink-purple, and white-grey-black. This grouping is represented by the boxes.

Following Berlin and Kay’s research, different studies (e.g., [4,31,38]) aimed
at predicting the boundaries between each of the color names. For example,
Figure 2 shows the standard Munsell color array using Van de Weijer et al. [31]
color classification based on color naming.

These methods work in the following manner. Given an RGB value in the
sRGB color space, color naming methods produce an 11-d vector that corre-
sponds to the probability of the RGB value belonging to each of the specific color
names listed above. This is visualized in Figure 3, where we show an original
image and the 11-probability maps coded with a color map to aid visualization.
As described in Section 3.2, our method leverages the Van de Weijer et al. [31]
color naming strategy to decompose each image in basic colors. However, we
combine colors with similar hues (e.g., brown and orange) resulting in six color
maps. In Figure 3 the colors grouped are shown in boxes.

2.2 Learned Image Enhancement

The need to provide users with tools to allow easy image enhancement has
grown significantly due to the ease of photo-taking with smartphones. Initially,

4 D. Serrano-Lozano et al.

histogram equalization was a primary method for enhancing contrast in im-
ages [25,27]. Subsequently, local operators [2,11] and color correction techniques
based on color constancy [30] were introduced. Since the introduction of the
MIT-Adobe-5K dataset by Bychkovsky et al. [7], which contains 5,000 images
retouched by 5 experts, data-driven methods have emerged as one of the pre-
ferred means to improve image quality.

One category of these data-driven methods involves estimating intermediate
or physical parameters for image retouching. Guo et al. [13] proposed Zero-DCE,
the first method to formulate low-light image enhancement as a curve estimation
problem. Their deep network estimates pixel-wise curves to modify the dynamic
range of input images. This groundbreaking work influenced subsequent meth-
ods, such as CURL [22], which estimates piecewise linear curves for HSV, RGB,
and CIELab color spaces; FlexiCurve [17], which estimates sets of piecewise
curves and blends them via a Transformer and LTMNet [41] that learns a grid
of tone curves to locally enhance an image. Additionally, Moran et al. [21] in-
troduced DeepLPF, inspired by Photoshop’s local filters tool, which estimates
elliptical, gradual, and polynomial filters for local image editing. Wang et al. [32]
proposed an alternative approach, estimating intermediate illumination maps for
under-exposed images instead of directly learning image-to-image mappings.

Lookup tables (LUTs) represent another widely used method for image ma-
nipulation, typically manually tuned and fixed in camera imaging pipelines or
photo editing tools. Zeng et al. [39] proposed 3DLUT, a method to learn these 3D
LUTs from annotated data with a small convolutional neural network. Building
upon this, Yang et al. [36] proposed AdaInt, a mechanism to achieve a more flex-
ible sampling by learning the non-uniform sampling intervals. Wang et al. [33]
also presented a modification of 3DLUT that incorporates spatial information
to compute the image transformation.

Conversely, image-to-image methods estimate directly a mapping to modify
the input images without intermediate steps. Generative adversarial networks
(GANs) are frequently employed for such tasks. Chen et al. [8], Ni et al. [23],
and Jiang et al. [15] proposed unpaired learning schemes using single GANs to
estimate enhanced versions of input images directly.

As in previous methods [17,22,41], we use tone curves to manipulate images.
However, we propose to leverage the use of color naming decomposition and an
attention-based fusion scheme to mimic the image editing style of an expert.

3 Proposed Method

Figure 4 shows an overview of our proposed method, NamedCurves. Our method
aims to enhance a low-quality RGB input image x, by a learned model that out-
puts an enhanced version ŷ. This enhanced image is derived as close as possible
to the expert-retouched image y, based on some objective function L.

Our method consists of four main components, which are detailed in the
following sections, including the loss function used for optimizing the framework.
The approach first applies a DNN backbone that standardizes the input image

NamedCurves: Learned Image Enhancement via Color Naming 5

Backbone

Color Naming

Bezier CPE Apply curves Attention

Attention

Attention

Attention

Attention

Attention

Weighted

Naming

Average

Orange-Brown-Yellow Achromatic Pink-Purple

Orange-Brown-Yellow Achromatic

Pink-Purple Red

Green Blue

𝑥 ො𝑦𝑏

ො𝑦

𝑦
𝐿

1

0

1

0

1

0

0 1 0 1 0 1

𝑄 = ො𝑦𝑏

𝑄

𝑄

𝑄

𝑄

𝑄

Red Green Blue
1

0

1

0

1

0

0 1 0 1 0 1

Fig. 4: Overview of the proposed method, NamedCurves. Our method aims to enhance
an input image x. First, we use a UNet-like backbone to standardize the input image
into a canonical latent space. Next, we decompose the standardized image ŷb into six
color probability maps (shown color-coded in the figure to aid visualization). Next, we
learn a set of Bezier curves for each color name to manipulate the standardized image
ŷb, obtaining six distinct globally adjusted images. Finally, an attention mechanism
is used to fuse the edited images using as Query the standardized image ŷb and as
Key and Value the corresponding edited image. Our learning-based method uses an
objective function L to compare the expert-retouched image with our final result ŷ.

into a canonical latent space. Next, we use color naming to decompose the image
into six color maps. After color naming decomposition, a neural network learns
a set of Bezier tone curves to manipulate each color map globally. Finally, an
attention mechanism combines the edited images to achieve local editing effects.

3.1 Backbone

One challenge faced by learning-based image enhancement methods is that input
images, x, can be captured using different cameras with different settings and
under different lighting conditions. This may impact our ability for consistent
color naming. Similar to the method by Moran et al. [21], we use a UNet-like
backbone to standardize the input images.

Our backbone is inspired by the LPIENet [10] architecture. We use MobileNet
layers (Conv-DWConv-eLU) [14] and a CBAM module [34]—a combination of spa-
tial and channel attention. The backbone consists of three encoder blocks and
two decoder blocks connected by multi-resolution skip connections. Each en-
coder block consists of the following: two MobileNet layers, a CBAM attention
block, and a max-pooling layer. The decoder blocks follow the same structure
except for the max-pooling layers that are replaced by bilinear upsampling lay-
ers. The multi-resolution skip connections consist of three parallel branches of
convolutional layers with different dilation rates. Two of the paths consist of two
Conv-LeakyReLU blocks to extract local information, while the other path con-
sists of three Conv-LeakyReLU-MaxPooling blocks, an AveragePooling and a
LinearLayer to extract global information. As in [12,20,22], we found that skip

6 D. Serrano-Lozano et al.

connections at different resolutions improve the performance against backbones
with simple skip connections.

3.2 Color Naming

We aim to decompose the standardized image ŷb into a set of likelihood colors
maps to focus different branches of the model. Due to the importance of memory
colors—the green of the grass or the blue of the sky— in aesthetics [26, 29] we
decided to use Color Naming, a perceptually-based color decomposition.

We used the color naming model from Van de Weijer et al. [31] to obtain the
probability maps for each color name. This model inputs an sRGB color value
and outputs the probability of this color to belong to each of the 11 color naming
categories, namely red, blue, green, yellow, pink, purple, orange, brown, white,
grey, black. When applied to an image, the model operates for each pixel, which
returns a set of probability maps.

We note that some linguistic color names share similar hues, but only dif-
fer in intensity. For example, orange and brown or pink and purple. As tone
curves are defined for all the intensity ranges, it will be beneficial to group these
colors together. To this end, we reduce the set of 11 probability maps to just 6
by grouping orange-brown-yellow, pink-purple, and white-grey-black (referring to
this last one as achromatic). The combined map for these cases is just the addi-
tion of the individual maps, and therefore, they are still probabilities (the sum
of all the maps for a specific pixel is 1)—see supplementary for further details.

Figure 4 shows the assignment of an input image to the six color maps.
Note that the images have been color-coded to help visualize their probabilities,
however, the colors associated with these maps are the original RGB values from
the input (see supplemental materials). In the following section, we describe how
each color map conditions a different set of RGB tone curves.

3.3 Bezier Curve Estimation

Similar to prior works [13,17,22], we leverage tone curves to remap the shadows,
midtones, and highlights of the image ŷb conditioned by the color naming prob-
ability maps. Tone curves represent global adjustments of the intensity from the
input level to the output level. The curves are applied pixel-wise in each color
channel as 1D Look-Up Tables. Bennet and Finlayson [5] demonstrated that tone
adjustments are typically simple curves for a large dataset of enhanced images
or can be well-approximated as such. We use Bezier curve parametrization to
generate smooth and continuous tone curves from discrete control points.

Specifically, we aim to estimate one global curve for each RGB channel c
and color name n. Each curve is parameterized by M control points. We evenly
distribute these control points along the input axis, with the first control point
fixed at (0, 0). Consequently, we only need to estimate the control points’ output
axis values instead of the two point coordinates, resulting in M−1 parameters

NamedCurves: Learned Image Enhancement via Color Naming 7

Blue Branch

Green Branch

Pink-Purple Branch

Orange-Brown-Yellow Branch

C

C

Achromatic Branch

Red Branch

ො𝑦𝑏

Δ𝑃𝑎𝑐ℎ𝑟

Conv + ReLU

Dropout

Max-Pooling

Avg-Pooling

Contextual Feature

Extractor

𝑀𝑎𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑖𝑐

𝑀𝑟𝑒𝑑

Δ𝑃𝑜𝑏𝑦

Δ𝑃𝑝𝑝

Δ𝑃𝑔𝑟𝑒𝑒𝑛

Δ𝑃𝑏𝑙𝑢𝑒

Δ𝑃𝑟𝑒𝑑

(𝑊𝑥𝐻𝑥64)

(3𝑥10)

(3𝑥10)

Fig. 5: Bezier Control Point Estimator (BCPE). First, we extract 64-D convolutional
feature maps from ŷb using mainly 4 Conv-ReLU blocks. Then, the color naming is
concatenated and passed through 4 Conv-ReLU-MaxPooling and a final AveragePooling
layer. The output of the module is ∆P , the unnormalized control points increments.

per curve. Thus, the Bezier formulation Bn,c of a curve can be expressed as:

Bn,c(i) =

M−1∑
m=0

Pn,c
m

(
M−1

m

)
(1− i)(M−1−m)im, (1)

where i ∈ [0, 1] is an image channel pixel, Pn,c
m denotes the m-th control point

for the color name n and channel c, and M is the total number of control points.
The Bezier Control Points Estimator (BCPE) aims to estimate the control

points defining the Bezier tonal curves of an image. Figure 5 illustrates the
BCPE, comprising two distinct blocks: the contextual feature extractor and 6
color naming branches. The contextual feature extractor primarily consists of 4
Conv-ReLU blocks and a Dropout, while the color naming branches consist of 4
Conv-ReLU-MaxPooling blocks and a final AveragePooling layer to manage the
variable sizes of the images.

The contextual feature extractor computes a 64-d convolutional feature map
from the standardized image ŷb. Each color naming branch receives as input
a concatenation of the 64-d feature maps and the corresponding color naming
probability map. The output of the branch for color name n consists of three
sets of M increments (∆Pn,c

m)
M
m=1, each set corresponding to a curve for a given

color channel c. These increments ∆Pn,c
m do not directly represent the control

points as we impose two different constraints. First, to make the curves mono-
tonically increasing functions, we define ∆Pn,c

m as positive increments relative to
the previous point. Second, we normalize ∆Pn,c

m , ensuring the total increment
between the first and last points is 1 and, thus, placing the last point at (1, 1).

8 D. Serrano-Lozano et al.

(3𝑥10)

𝑃𝑚
𝑟𝑒𝑑,𝑐

𝑃1

𝑃2 𝑃3

Input
(1𝑥10)

𝑃𝑚
𝑟𝑒𝑑,𝑅

Output

Fig. 6: An example of a Bezier curve (Red branch). The first column shows the input
and edited image pixels in which the red color name branch focuses. The center plot
shows the tone RGB curves learned for the red color name, while the right plot displays
a zoomed-in view of the first four control points of the red channel.

Consequently, we compute the control points Pn,c
m as the accumulated sum of

the normalized ∆Pn,c
m . This can be formulated as:

Pn,c
m =

1

Sn,c

m∑
k=1

∆Pn,c
k , (2)

where Sn,c =
∑M

k=1 ∆Pn,c
k .

Figure 6 illustrates an example of a Bezier curve. The left column shows the
input and output image pixels with higher red color name probability than 0.2
The center plot shows the tone curves learned for the red color name, while the
right plot displays a zoomed-in view of the first four control points of the red
channel. Note how the control points are fixed and evenly distributed along the
input axis, while Pn,c

m define the output axis value and, thus, the curvature of
the tonal curve. The six sets of Bezier curves learned are applied pixel-wise to
the entire standardized image ŷb, yielding six distinct globally-adjusted images.

3.4 Attention-based image fusion

Tone curves allow global color manipulation but cannot mimic local manipula-
tion from experts in the training images. Here, we detail how to fuse these images
via an attention-based mechanism that models their spatial dependencies.

For each of the 6 color name processed images, we use an attention module to
compute a blending weight per image. Specifically, we employ ŷb as the Query,
while the corresponding globally-adjusted image serves as the Key and Value.
Initially, we process the input images through 2 Conv-ReLU-MaxPooling blocks,
yielding 16 convolutional feature maps with a broad receptive field. In partic-
ular, Q,K, V ∈ RW/8×H/8×16. Finally, we aggregate ŷb using two Conv-ReLU-
Upsampling blocks. After the attention mechanism, we aggregate ŷb via two

NamedCurves: Learned Image Enhancement via Color Naming 9

Conv-ReLU-Upsampling blocks. Note that there is a trade-off between the at-
tention resolution and the computational cost. Downsampling the image by 8
did not introduce noticeable artifacts on the final image ŷ after upsampling.

Ultimately, to generate the final image ŷ, we compute a weighted average
of the obtained globally- and locally-adjusted images employing the original
color naming probability maps. To mitigate potential artifacts arising from low
probability values, we threshold the probability maps at 0.2, setting smaller
values to 0. Subsequently, we normalize the maps to ensure each pixel sums to
unity before performing the weighted average.

3.5 Loss Function

Our training loss function comprises three terms. The initial term calculates
the L2 loss between the standardized image ŷb and the ground truth y, with a
weighting factor α. The subsequent two terms compute the L2 and SSIM losses
between the output of our model ŷ and y. The primary objective of the first term
is to obtain a good enough standardized output by the backbone. The other two
terms are designed to assess the fidelity of the final output. In our experiments,
we set α to 0.5 (see supplementary for an ablation study on this term). This
value was determined to yield optimal performance and allows the image ŷb to
represent the scene colors accurately. The training loss is defined as:

L(ŷb, ŷ, y) = α||y − ŷb||2 + ||y − ŷ||2 + (1− SSIM(y, ŷ)). (3)

4 Experimental Results

4.1 Experimental setup

Datasets: We compare our method with state-of-the-art (SOTA) methods
using the widely used MIT-Adobe-5K dataset [7] and the PPR10K dataset [19].
MIT5K consists of 5000 images captured independently using several DSLR
cameras and retouched by five artists. However, although the image content
is the same, different "versions" have emerged due to variations in image pre-
processing and the number of training images. To make a fair comparison with
all the SOTA methods, we have used three versions: (1) DPE [8], (2) UPE [32],
and (3) UEGAN [23]. Specifically, DPE splits the data into 2250, 2250, and 500
images for training, validation, and testing, respectively. The last two versions
split the images into 4500 images for training and 500 images for testing. DPE
and UEGAN pre-process the images in the same manner but with different image
sizes, while UPE pre-processes the input images to be under-exposed. Following
[8, 17, 21, 22, 32] we only use the Expert-C retouched images as ground truth.
PPR10K is a portrait photo retouching dataset with 11616 high-quality images
retouched by 3 experts independently. We use the official splits, dividing the
images into 8875 and 2286 for training and testing, respectively. Following [36]
we conducted the experiments on the 360p augmented version which every image
pair has 5 extra input versions with different manual settings. As in [19, 36, 39]
we evaluate our method on the three expert-retouched versions of PPR10K.

10 D. Serrano-Lozano et al.

Table 1: Quantitative comparisons on the DPE, UPE, and UEGAN versions of the
MIT-Adobe-5K dataset. “-” means the source code or models are unavailable, or results
for the corresponding metric were not in the original paper.

MIT-5K Method PSNR ↑ SSIM ↑ LPIPS ↓ ∆E00 ↓ ∆Eab ↓ Time (ms)

DPE

DPE [8] 23.80 0.900 - - - -
DeepLPF [21] 23.93 0.903 0.040 7.00 8.05 136
CURL [22] 24.04 0.900 - - - 102
FlexiCurve [17] 24.37 0.920 0.060 - - -
NamedCurves (Ours) 24.91 0.927 0.038 6.60 7.82 26

UPE

DPE [8] 22.15 0.850 0.108 - - -
UPE [32] 23.04 0.893 0.158 - - -
LTMNet [41] 24.27 0.913 0.068 - - -
DeepLPF [21] 24.48 0.887 0.103 6.89 7.77 136
NamedCurves (Ours) 25.20 0.906 0.047 6.54 7.58 26

UEGAN

InstructIR [9] 24.65 0.900 - - 7.61 -
3DLUT [39] 25.29 0.923 0.043 6.76 7.55 13
SepLUT [37] 25.47 0.921 0.042 6.71 7.49 10
AdaInt [36] 25.49 0.926 0.041 6.69 7.47 13
NamedCurves (Ours) 25.59 0.936 0.038 6.07 7.40 26

Implementation Details: We trained our model using Adam [16], an initial
learning rate 1e-4, reduced by 50% every 50 epochs. We use horizontal flips
for augmenting the training data. We chose the model with the best validation
∆E00 in the DPE version of the MIT5K, while we trained for a fixed 200 and
100 epochs for the other versions of MIT5K and PPR10K, respectively.

4.2 Comparison with SOTA Methods

We compare our method with SOTA methods using the MIT5K and the PPR10K
datasets, using the corresponding evaluation metrics. Specifically, in the MIT5K
comparisons, we used PSNR, SSIM, LPIPS [40], ∆E00 and ∆Eab. MIT5K results
are presented in Table 1. We also report the inference time for a 480p image on
an AMD EPYC 7642 and a single NVIDIA A40. Our full architecture outper-
forms contemporary curve estimation methods; CURL [22], FlexiCurve [17] and
LTMNet [41] on the DPE and UPE versions of MIT5K. Similarly, our method
outperforms all-in-one, image-to-image, and LUT-based methods across all the
versions. Table 2 shows results on the PPR10K dataset. Following [19, 36], we
used PSNR and ∆Eab to compare our method with the state-of-the-art. As the
other methods did not compute SSIM, LPIPS and ∆E00 and the pre-trained
models are unavailable, we report these metrics for our model in the supplemen-
tary material. We outperform all the contemporary methods on both PSNR and
∆Eab on the three expert versions of the dataset.

Figure 7 provides several qualitative comparisons, showing examples from
both the MIT5K and the PPR10K datasets in Figure 7a and 7b, respectively. Our

NamedCurves: Learned Image Enhancement via Color Naming 11

Input DeepLPF [21] 3DLUT [39] AdaInt [36] NamedCurves

PSNR = 21.01
ΔE = 11.67

PSNR = 20.07
ΔE = 12.64

PSNR = 19.91
ΔE = 12.89

PSNR = 29.09
ΔE = 4.53

PSNR = 24.12
ΔE = 7.01

PSNR = 25.09
ΔE = 7.05

PSNR = 25.46
ΔE = 6.70

PSNR = 26.98
ΔE = 4.72

PSNR = 22.51
ΔE = 10.06

PSNR = 23.43
ΔE = 9.38

PSNR = 23.37
ΔE = 9.16

PSNR = 28.82
ΔE = 4.85

Ground Truth

(a) MIT-5K dataset qualitative results.

Input AdaInt [36] NamedCurves Ground Truth

PSNR = 21.95
ΔE = 6.44

PSNR = 25.45
ΔE = 5.08

PSNR = 23.80
ΔE = 6.71

PSNR = 27.08
ΔE = 3.18

(b) PPR10K dataset qualitative results.

Fig. 7: Qualitative comparisons on the MIT-5K (Figure 7a) and PPR10K datasets
(Figure 7b). On the bottom-right of each image we display the PSNR and ∆E00.

Table 2: Quantitative comparisons the PPR10K dataset. We only compute mean
PSNR and ∆Eab since most other methods do not have models available for inference.

PPR10K Expert A Expert B Expert C

Method PSNR ↑ ∆Eab ↓ PSNR ↑ ∆Eab ↓ PSNR ↑ ∆Eab ↓

HDRNet [18] 23.93 8.70 23.96 8.84 24.08 8.87
3DLUT [39] 25.64 6.97 24.70 7.71 25.18 7.58
SepLUT [37] 26.28 6.59 25.23 7.49 25.59 7.51
AdaInt [36] 26.33 6.56 25.40 7.33 25.68 7.31
NamedCurves (Ours) 26.81 6.48 25.91 7.18 25.69 7.27

method provides visually appealing results that resemble the expert-retouched
version regarding color fidelity. In Figure 7a, for instance, our method accurately
rectifies color casts in the first two rows. Lastly, in the third row, our method
demonstrates superior performance in enhancing nighttime images. Similarly,
in Figure 7b our method outperforms AdaInt [36] in replicating the expert-

12 D. Serrano-Lozano et al.

Table 3: Ablation studies on the contributions of each module of our proposed method.

Backbone Curves CN Att. WN-Avg PSNR ↑ SSIM ↑ ∆E00 ↓

1 6 ✓ ✓ ✓ 23.40 0.912 8.87
2 ✓ 23.74 0.916 8.68
3 ✓ 1 24.09 0.921 7.53
4 ✓ 6 24.24 0.922 7.50
5 ✓ 6 ✓ 24.56 0.926 7.07
6 ✓ 6 ✓ ✓ 24.68 0.926 6.88
7 ✓ 6 ✓ ✓ 24.60 0.926 6.92
8 ✓ 6 ✓ ✓ ✓ 24.91 0.927 6.60

retouched image on the PPR10K-A dataset. This is particularly noticeable in
regions such as the background brown wall (first row) and the global color tem-
perature (last row).

We provide additional qualitative examples in Figure 8. The top row shows
the outcomes generated by the methods, while the bottom row displays the per-
pixel ∆E00 error maps. In the first row, the other methods struggle to address
color cast issues effectively, leading to significant ∆E00 values across the en-
tire image. Conversely, our method demonstrates superior performance, yielding
minimal errors confined primarily to small regions. The second image has two
distinct areas: one characterized by intricate details and the other by a plain
surface. DeepLPF [21] exhibits artifacts, such as the elliptical distortion in the
grey area. Similarly, 3DLUT [39] and AdaInt [36] show limitations by enhancing
properly only one of the image regions, thereby resulting in substantial errors
in the other segment. In contrast, our method consistently enhances the pho-
tograph across the entire image by seamlessly integrating both local and global
adjustments.

User Study: We compared our method against AdaInt [36] and SepLUT [37]
following a two-alternative forced choice (2AFC), performed in a completely
black room with a monitor set to sRGB. We randomly selected 25 images from
both MIT5K and PPR10K datasets. 15 observers took part, all tested for col-
orblindness with the Ishihara test. Results analyzed using Thurstone Case V
(larger means better) were: NamedCurves: 1.12; AdaInt: -0.38; SepLUT: -0.74.
Our method is statistically significantly better than the other two —95% confi-
dence interval is 0.33.

4.3 Ablation studies

In this section, we choose the DPE version of MIT5K to conduct several abla-
tion studies to verify the proposed method. We performed experiments to under-
stand the effectiveness of the individual modules used by our framework. Table 3
presents the results for various combinations of the modules of our method. We
report PSNR, SSIM, and ∆E00. Throughout the experiments, we consistently

NamedCurves: Learned Image Enhancement via Color Naming 13

ΔE = 10.60 ΔE = 6.71 ΔE = 8.21 ΔE = 3.03

Ground Truth

Input

ΔE = 3.85 ΔE = 2.78 ΔE = 2.95 ΔE = 2.01

Input

Ground Truth

DeepLPF [21] 3DLUT [39] AdaInt [36] NamedCurves

20

15

10

5

0

7.5

5.0

2.5

0.0

Fig. 8: Qualitative results of two images of the MIT-Adobe-5K. The first column
presents the input and the expert-retouched image. The top row shows the estimated
enhanced version of the input image of DeepLPF [21], 3DLUT [39], AdaInt [36] and
our method. Under each image, we present the ∆E00 error map. On the bottom-right
of each image, we display the mean ∆E00.

utilize the backbone while incrementally incorporating different modules of our
method. The column labeled Curves indicates the number of RGB Bezier curves
utilized and, consequently, the number of globally adjusted images produced.
The color naming column (CN) specifies whether the color naming probability
maps are concatenated with the 64-d feature maps used by the Beizer curve ma-
nipulation. Note that if we use the color naming probability maps we must use
six curves. The Attention (Att.) column indicates whether we apply local modifi-
cations to the globally adjusted images before fusing them. Finally, the WN-Avg
column denotes whether the experiment employs the color naming maps to weigh
the images before blending them. In cases where we do not use WN-Avg and
there are multiple output images, we simply average them.

This table shows how combining the different modules of our model improves
the performance. Each of our additions improves the result. Experiment 1 em-
phasizes the importance of the backbone of our model. In detail, color naming
modules produce the largest boosts in performance. We gain 0.32 dB in PSNR
and 0.43 in ∆E00 when we concatenate the color naming maps to the Bezier
Control Point Estimator feature maps - experiment 5. Furthermore, we also
gain 0.31 dB in PSNR and 0.32 in ∆E00 when we use the color naming maps to
weight the final average - experiment 8.

We further investigate assessing our backbone’s impact on our model’s per-
formance. We evaluate by using different backbones from other methods. Table
4a reports the results of our experiments. Notably, our proposed backbone yields
superior performance compared to other methods’ backbones, namely UNet [21],

14 D. Serrano-Lozano et al.

Table 4: Ablation studies for the (a) backbone architecture and (b) the number of
control points in the Bezier curves.

Backbone PSNR ↑ SSIM ↑ ∆E00 ↓

UNet [21] 24.49 0.920 7.04
LPIENet [10] 24.51 0.920 7.07
TED [22] 24.70 0.925 6.97
NamedCurves 24.91 0.927 6.60

(a) Ablation on backbone

N PSNR ↑ SSIM ↑ ∆E00 ↓

5 24.69 0.924 6.82
7 24.88 0.926 6.76
11 24.91 0.927 6.60
16 24.52 0.920 6.85

(b) Ablation on number of control points

ΔE = 5.12 ΔE = 4.40 ΔE = 4.24 ΔE = 4.20

Input DeepLPF [21] 3DLUT [39] AdaInt [36] NamedCurves Ground Truth

Fig. 9: Example of an image with just two dominant colors. Our method still outper-
forms the others, but does not obtain the same level of advantage.

TED [22] and LPIENet [10]. Importantly, irrespective of the utilized backbone,
our method consistently outperforms the previous state-of-the-art models on
this DPE version of MIT5K. This highlights the significance of leveraging color
naming as the main contributing factor to the performance of our method.

We perform a final ablation study on the number of control points N . We
tested our method with 5, 7, 11, and 16 control points for each Bezier curve. In
Table 4b we report the PSNR, SSIM, and ∆E00 of every experiment. We found
that 11 control points –every 0.1 in the input axis– works best for our method.

4.4 Limitations

Our method aims to replicate the image style of a skilled photographer estimat-
ing a series of tone curves for each color name. However, our method loses part
of its advantage compared to the previous SOTA methods in scenarios where the
image comprises few color regions. In such instances, different branches of the
method receive low-weighting values, resulting in an almost global adjustment
technique (e.g. image dominated by just two color names, see Figure 9).

5 Conclusion

This paper introduced a new image enhancement model based on color nam-
ing that outperforms the current state-of-the-art across various versions of the
Adobe 5K and the PPR10K datasets. Our approach uses expert-edited images
for learning and explicitly separates the image into a small set of named colors.
It learns to adjust the image for each specific named color and then combines
the images using an attention-based fusion mechanism.

NamedCurves: Learned Image Enhancement via Color Naming 15

Acknowledgements

DSL, LH, and JVC were supported by Grant PID2021-128178OB-I00 funded by
MCIN/AEI/10.13039/ 501100011033 and by ERDF "A way of making Europe",
by the Departament de Recerca i Universitats from Generalitat de Catalunya
with reference 2021SGR01499, and by the Generalitat de Catalunya CERCA
Program. DSL also acknowledges the FPI grant from Spanish Ministry of Science
and Innovation (PRE2022-101525). LH was also supported by the Ramon y Cajal
grant RYC2019-027020-I. MSB was supported by CFREF (VISTA) program, an
NSERC Discovery Grant, and the Canada Research Chair program.

References

1. Adobe Systems: Adobe photoshop. Computer software, photoshop.adobe.com 2
2. Aubry, M., Paris, S., Hasinoff, S.W., Kautz, J., Durand, F.: Fast local laplacian

filters: Theory and applications. ACM TOG 33(5), 1–14 (2014) 4
3. Bahng, H., Yoo, S., Cho, W., Park, D.K., Wu, Z., Ma, X., Choo, J.: Coloring

with words: Guiding image colorization through text-based palette generation. In:
ECCV. pp. 431–447 (2018) 2

4. Benavente, R., Vanrell, M., Baldrich, R.: Parametric fuzzy sets for automatic color
naming. JOSA A 25(10), 2582–2593 (2008) 3

5. Bennett, J., Finlayson, G.D.: Simplifying tone curves for image enhancement
(2023) 6

6. Berlin, B., Kay, P.: Basic color terms: Their universality and evolution. Univ of
California Press (1991) 2

7. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global
tonal adjustment with a database of input/output image pairs. In: CVPR (2011)
4, 9

8. Chen, Y.S., Wang, Y.C., Kao, M.H., Chuang, Y.Y.: Deep photo enhancer: Unpaired
learning for image enhancement from photographs with gans. In: CVPR (2018) 4,
9, 10

9. Conde, M.V., Geigle, G., Timofte, R.: High-quality image restoration following
human instructions. arXiv preprint arXiv:2401.16468 (2024) 10

10. Conde, M.V., Vasluianu, F., Vazquez-Corral, J., Timofte, R.: Perceptual image
enhancement for smartphone real-time applications. In: WACV. pp. 1848–1858
(2023) 5, 14

11. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range
images. In: SIGGRAPH (2002) 4

12. Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral
learning for real-time image enhancement. ACM TOG 36(4), 1–12 (2017) 5

13. Guo, C., Li, C., Guo, J., Loy, C.C., Hou, J., Kwong, S., Cong, R.: Zero-reference
deep curve estimation for low-light image enhancement. In: CVPR (2020) 4, 6

14. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017) 5

15. Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P.,
Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE
TIP 30, 2340–2349 (2021) 4

photoshop.adobe.com

16 D. Serrano-Lozano et al.

16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014) 10

17. Li, C., Guo, C., Zhou, S., Ai, Q., Feng, R., Loy, C.C.: Flexicurve: Flexible piecewise
curves estimation for photo retouching. In: CVPRW (2023) 4, 6, 9, 10

18. Li, J., Fang, P.: Hdrnet: Single-image-based hdr reconstruction using channel at-
tention cnn. In: ICMSSP (2019) 11

19. Liang, J., Zeng, H., Cui, M., Xie, X., Zhang, L.: Ppr10k: A large-scale portrait
photo retouching dataset with human-region mask and group-level consistency. In:
CVPR (2021) 9, 10

20. Marnerides, D., Bashford-Rogers, T., Hatchett, J., Debattista, K.: Expandnet: A
deep convolutional neural network for high dynamic range expansion from low
dynamic range content. In: Comput. Graph. Forum. vol. 37, pp. 37–49 (2018) 5

21. Moran, S., Marza, P., McDonagh, S., Parisot, S., Slabaugh, G.: Deeplpf: Deep local
parametric filters for image enhancement. In: CVPR (2020) 1, 4, 5, 9, 10, 12, 13,
14, 21, 23

22. Moran, S., McDonagh, S., Slabaugh, G.: Curl: Neural curve layers for global image
enhancement. In: ICPR (2021) 4, 5, 6, 9, 10, 14, 21

23. Ni, Z., Yang, W., Wang, S., Ma, L., Kwong, S.: Towards unsupervised deep image
enhancement with generative adversarial network. IEEE TIP 29, 9140–9151 (2020)
4, 9

24. Regier, T., Kay, P., Khetarpal, N.: Color naming reflects optimal partitions of color
space. Proceedings of the National Academy of Sciences 104(4), 1436–1441 (2007)
2

25. Reza, A.M.: Realization of the contrast limited adaptive histogram equalization
(clahe) for real-time image enhancement. J VLSI SIG PROC SYST 38, 35–44
(2004) 4

26. Shing-Sheng, G., Po-Sung, H.: Influences of psychological factors on image color
preferences evaluation. Color Research & Application 35(3), 213–232 (2010) 6

27. Stark, J.A.: Adaptive image contrast enhancement using generalizations of his-
togram equalization. IEEE TIP 9(5), 889–896 (2000) 4

28. Szafir, D.A.: Modeling color difference for visualization design. IEEE transactions
on visualization and computer graphics 24(1), 392–401 (2017) 2

29. Topfer, K., Cookingham, R.: The quantitative aspects of color rendering for mem-
ory colors. In: IS&T’s PICS (2000) 6

30. Van De Weijer, J., Gevers, T., Gijsenij, A.: Edge-based color constancy. IEEE TIP
16(9), 2207–2214 (2007) 4

31. Van De Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for
real-world applications. IEEE TIP 18(7), 1512–1523 (2009) 3, 6, 18, 19, 20

32. Wang, R., Zhang, Q., Fu, C.W., Shen, X., Zheng, W.S., Jia, J.: Underexposed
photo enhancement using deep illumination estimation. In: CVPR (2019) 4, 9, 10

33. Wang, T., Li, Y., Peng, J., Ma, Y., Wang, X., Song, F., Yan, Y.: Real-time image
enhancer via learnable spatial-aware 3d lookup tables. In: ICCV (2021) 4

34. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: Convolutional block attention
module. In: ECCV. pp. 3–19 (2018) 5

35. Xue, D., Corral, J.V., Herranz, L., Zhang, Y., Brown, M.S.: Integrating high-level
features for consistent palette-based multi-image recoloring. In: Comput. Graph.
Forum. vol. 42, p. e14964. Wiley Online Library (2023) 2

36. Yang, C., Jin, M., Jia, X., Xu, Y., Chen, Y.: Adaint: Learning adaptive intervals
for 3d lookup tables on real-time image enhancement. In: CVPR (2022) 4, 9, 10,
11, 12, 13, 21, 23, 24

NamedCurves: Learned Image Enhancement via Color Naming 17

37. Yang, C., Jin, M., Xu, Y., Zhang, R., Chen, Y., Liu, H.: Seplut: Separable image-
adaptive lookup tables for real-time image enhancement. In: European Conference
on Computer Vision. pp. 201–217. Springer (2022) 10, 11, 12

38. Yu, L., Cheng, Y., van de Weijer, J.: Weakly supervised domain-specific color
naming based on attention. In: ICPR. IEEE (2018) 3

39. Zeng, H., Cai, J., Li, L., Cao, Z., Zhang, L.: Learning image-adaptive 3d lookup
tables for high performance photo enhancement in real-time. IEEE TPAMI 44(4),
2058–2073 (2020) 4, 9, 10, 11, 12, 13, 21, 23

40. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR (2018) 10

41. Zhao, L., Abdelhamed, A., Brown, M.S.: Learning tone curves for local image
enhancement. IEEE Access 10, 60099–60113 (2022) 4, 10

18 D. Serrano-Lozano et al.

Supplementary Material

The supplemental material provides additional information that could not be
incorporated into the main paper due to page limit constraints. Specifically, we
discuss (1) Adobe’s color decomposition method, (2) more information on color
naming probability maps, (3) further justifications on the color names grouping,
(4) loss function parameter α ablation study, and (5) additional results.

Adobe Color Decomposition

Adobe Photoshop and Adobe Lightroom are software tools to allow photo ed-
itors the ability to fine-tune individual colors within an image. Our method is
inspired by these tools. In particular, the software decomposes the image into a
predefined set of colors (red, orange, yellow, green, cyan, blue, purple and pink),
enabling users to independently manipulate the hue, saturation, and luminance
of each color. In Figure 10, we show two screenshots of the tools and examples
edited using this feature. For each example, we display the top of the input image
alongside the default parameter values for the color to fine-tune. We show the
edited image in the bottom images alongside the corresponding slider adjust-
ments. In the left example, we demonstrate the modification of blue, illustrating
alterations in the sky while preserving non-blue regions. In the right example,
we focus on adjusting purple, a non-primary color. This allows us to selectively
modify specific purple elements, such as the girl’s clothing, without affecting
the rest of the image. Notably, adjustments to the desired color sliders induce
changes across all three color channels, as evident in the histograms provided in
the top-right corner.

Color Naming Probability Maps

As discussed in the main paper, we use the color naming method proposed
by Van de Weijer et al. [31]. This method is applied on each pixel. Given an
sRGB image, this method generates 11 probability maps, each corresponding to
a distinct color name: red, blue, green, yellow, pink, purple, orange, brown, white,
grey, black. As discussed in the main paper, we group certain color names due
to their similar hues, differing primarily in intensity only. Specifically, we merge
orange-brown-yellow, pink-purple, and white-grey-black (referring to this last one
as achromatic). The combined maps are obtained by summing the individual
probability maps. In the end, we obtain probability maps for 6 color categories.

Figure 11 illustrates these color-naming probability maps using different vi-
sualizations. In the first two examples, we depict the 11 color naming probability
maps using the same color map for all the color names. In the third and fourth
examples, we show the image pixels exceeding 0.2 probability for the 11 color
names and the 6 color-category version, respectively. In this case, the pixels in
the maps represent the real sRGB values in the original image. Finally, in the
last example, we use the same visualization method as in the main submission
(i.e., Figures 1, 3, and Figure 4). We also account for the probabilities assigned

NamedCurves: Learned Image Enhancement via Color Naming 19

Fig. 10: Two examples of the Adobe Color Decomposition tool. In the left example,
we manipulate the hue, saturation, and luminance of the color blue, while in the right
example, we modify the color purple.

to each color to emphasize the probability aspect of color naming. In particular,
for each pixel and color name, we compute:

n = (1− pi)Iw + piIi, (4)

where pi represents the color name probability of pixel i, Iw denotes a white RGB
value (i.e., [1, 1, 1]) and Ii signifies the RGB value of pixel i. It is important to
note that the colors represented in these maps are not the original RGB values
of the image, as they are scaled by the color naming probability p.

Color Names Grouping

We used the color naming model from Van de Weijer et al. [31] to obtain the
probability map for each color name, namely red, blue, green, yellow, pink, pur-
ple, orange, brown, white, grey, black. However, we note that some linguistic
color names share similar hues, but only differ in intensity. As tone curves are
defined for all the intensity ranges, it will be beneficial to group these colors to-
gether. To this end, we reduce the set of 11 probability maps to just 6 by group-
ing orange-brown-yellow, pink-purple, and white-grey-black (referring to this last
one as achromatic). In Figure 12, we visually show the reason for reducing the
number of Color Naming channels to just 6. The figure illustrates 2D plots de-
picting the relationship between input and output intensity values for pixels
with probability > 0.5 belonging to each specific color. For example, in the case

20 D. Serrano-Lozano et al.

Orange Brown Yellow

Black Gray White Red

Pink Purple

Green Blue

0.0

0.25

0.50

0.75

1.0

Orange Brown Yellow

Black Gray White Red

Pink Purple

Green Blue

0.0

0.25

0.50

0.75

1.0

Orange Brown Pink Purple

Grey White Red Green Blue

Yellow

Black

Orange-Brown-Yellow Achromatic Pink-Purple

Red Green Blue

Orange-Brown-Yellow Achromatic Pink-Purple

Red Green Blue

Fig. 11: Van de Weijer et al. [31] color naming method applied pixel-wise to five
images. The color naming probability maps of the first two examples are displayed
with the same color map. The third and fourth rows present visualization examples
where we display the image pixels whose color naming map is higher than 0.2. The
last row presents the same visualization as in the main paper, where we also take into
consideration the probability value.

NamedCurves: Learned Image Enhancement via Color Naming 21

Fig. 12: Joined color names with respect to the intensity value. Pixels with probability
> 0.5 are plotted.

Table 5: Ablation study on the α parameter of the loss function on the MIT5K-DPE
dataset.

α PSNR ∆E00

0 24.58 6.76
0.5 24.91 6.60
1 24.73 6.62

of orange-brown-yellow, brown is only present at low intensities, while orange
dominates at mid-intensities and yellow at top intensities. The same analysis
extends to the other joined color channels. Our method aims to learn a curve to
be applied at all the intensity levels. Thus, incorporating information spanning
all the intensity levels is beneficial. To also show this numerically, we experi-
mented using our model with the 11 color terms, obtaining a PSNR of 24.72 dB
(in comparison to 24.91 dB with 6 channels) in the MIT5K-DPE dataset.

Loss Function Ablation Study

Following prior works (DeepLPF [21], CURL [22]) our method starts with a
backbone that serves to standardize the input. We consider three loss terms: the
l2 loss between the output of the backbone and the reference image and the l2
and SSIM losses between the final output and the reference image. We chose to
weight the backbone loss by α = 0.5. An ablation study is shown in Table 5,
where we can see that α = 0.5 gives better results than α = 0 (i.e., ignore the
backbone output) and α = 1 (i.e., heavily weight backbone output).

Additional MIT5K and PPR10K qualitative results

Figure 13 and Figure 14 show additional results from the MIT5K and PPR10K,
respectively. We compare our method with DeepLPF [21], 3DLUT [39] and
AdaInt [36].

22 D. Serrano-Lozano et al.

Table 6: Additional quantitative results of our method on the PPR10K dataset.
No other method computes these metrics in their respective papers for the PPR10K
dataset.

Expert SSIM ↑ LPIPS ↓ ∆E00 ↓

A 0.957 0.031 5.46
B 0.956 0.032 5.61
C 0.949 0.032 5.68

Additional PPR10K quantitative results

Table 6 reports SSIM, LPIPS and ∆E00 of our model on experts A, B and C of
PPR10K. These metrics are not computed by other methods in their respective
papers.

NamedCurves: Learned Image Enhancement via Color Naming 23

Input DeepLPF 3DLUT AdaInt NamedCurves

ΔE = 5.52 ΔE = 6.91 ΔE = 6.73 ΔE = 4.36

ΔE = 7.34 ΔE = 4.20 ΔE = 5.60 ΔE = 3.56

ΔE = 9.93 ΔE = 10.47 ΔE = 10.26 ΔE = 5.12

Ground Truth

ΔE = 6.23 ΔE = 5.72 ΔE = 6.02 ΔE = 3.92

ΔE = 8.28 ΔE = 6.21 ΔE = 5.72 ΔE = 3.09

ΔE = 6.28 ΔE = 6.47 ΔE = 6.78 ΔE = 2.89

ΔE = 8.00 ΔE = 5.70 ΔE = 5.61 ΔE = 2.84

Fig. 13: Additional qualitative results on the MIT5K dataset. From left to right: the
input image, DeepLPF [21], 3DLUT [39], AdaInt [36], our method, and the ground
truth. ∆E00 is shown in the bottom-right corner of each image.

24 D. Serrano-Lozano et al.

Input AdaInt NamedCurves Ground Truth

ΔE = 6.35 ΔE = 5.37

ΔE = 7.02 ΔE = 5.07

ΔE = 11.38 ΔE = 4.82

ΔE = 7.33 ΔE = 3.46

ΔE = 11.60 ΔE = 6.60

ΔE = 9.12 ΔE = 6.21

Fig. 14: Additional qualitative results performed using the PPR10K dataset. From
left to right: the input image, AdaInt [36], our method, and the ground truth. ∆E00 is
shown in the bottom-right corner of each image.

	NamedCurves: Learned Image Enhancement via Color Naming

