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Abstract
Scenes with back-light illumination are problematic when

captured with a typical LDR camera, as they result in dark regions
where details are not perceivable. In this paper, we present a
method that, given an LDR backlit image, outputs an image where
the information that was not visible in the dark regions is recovered
without losing information in the already well-exposed parts of
the image. Our method has three main steps: first, a variational
model is minimized using gradient descent, and the iterates of the
minimization are used to obtain a set of weight maps. Second,
we consider the tone-mapping framework [3J that depends on
four parameters. Two different sets of parameters are learned
by dividing the image in the darker and lighter parts. Then, we
interpolate the two sets of parameter values in as many sets as
weighting maps, and tone-map the original image with each set
of parameters. Finally, we merge the new tone-mapped images
depending on the weighting maps. Results show that our method
outpeiforms current backlit image enhancement approaches both
quantitatively and qualitatively.

Introduction
Conventional cameras fail in capturing all the details and

contrast that we perceive with the naked eye. One typical such
scenario is a backlit scene where the details in the bright regions
are captured properly when a short time exposure is used but at the
expense of a poor rendering in the dark regions. And when a long
exposure time is used, the dark regions are captured properly but
the bright intensity values are clipped. No single exposure value
will allow to capture the entire scene properly.

With the advancement of High Dynamic Range (HDR) imag-
ing techniques over the past few years it is now possible to po-
tentially capture the full range of light information of a scene
[18]. And tone-mapping allows to render them on a display. Tone-
mapping algorithms can also be adapted also to perform image
enhancement and modify the style of single LDR images [14].

In this paper, we deal with the improvement of single LDR
backlit images to recover those details that are not visible in the
image. Our approach first obtains a set of weight maps that join
together regions with similar luminance range. This step is per-
formed by minimizing an energy functional related to Retinex
and perceptual color processing [1, 2]. Then, a set of different
tone curves are learned based on the framework given by [3], that
hinges on findings in psychophysical experiments [12]. Finally,
we merge the weight maps together with the images obtained by
tone-mapping the original image with the different tone-curves.

This paper is divided as follows. Next section details the
related work. Later we explain our approach. We then move
towards the results section where we prove the adequacy of our
method both quantitatively and qualitatively. The paper ends with
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the concluding remarks.

Related Work
Different approaches have been defined to solve the problem

of backlit images. We can divide them into local image enhance-
ment methods, fusion-based methods, and segmentation-based
methods.

Local image enhancement methods are the simpler solutions
for the problem. Examples of this type of approaches are local
histogram equalization methods like the CLAHE approach [28],
the original Retinex model [13] and its multi-scale Retinex frame-
work [17] or some other versions that aim at preserving naturalness
[10,23]. The former approach is prone to halo artifacts and can be
alleviated with edge-aware processings, such as the ones proposed
by Farbman et at. [5], and Paris et al [16]. Yuan and Sun [25]
proposed an automatic exposure correction algorithm that is also
useful for backlit image restoration. Finally, a recent variational
model based on the log-transform [7], or an image enhancement
method inspired by the Dark Channel prior [4] can also be used
for this problem.

Regarding fusion-based methods, Fu et at. [6] first separate
the image into reflectance and illumination, from which three
new possible illuminations are derived. These illuminations are
weighted and blended together to obtain a new illumination that
is combined with the original reflectance to obtain the final result.
Ying et at. [24] proposed a multi-exposure fusion framework
that makes use of a new camera model that allows to synthesize
multi-exposure images.

The first segmentation-based method for this problem was
proposed by Tsai and Yeh [21]. They threshold the luminance of
the image and linearly stretch the backlit detected regions. Re-
cently, Li and Wu [15] proposed a learning-based method to clas-
sify superpixels of the image into backlit or frontlit regions and
then a different tone-mapping is applied to each of these segments.

Proposed approach
Our approach is inspired by the observation that segmentation-

based methods tend to fail when an object of dark color is present
in the properly illuminated region, as it is commonly selected as
belonging to the dim region. To alleviate this problem we propose
a variational-based region split where both the original input values
and the local contrast of the object are considered to create a set
of weight maps. The local contrast will have a high value for a
dark object in the proper illumination region, while it will have
a low value for any object of the same luminance found in the
dimmer region; therefore allowing us to distinguish between the
two cases. Later, once the weight maps are defined, we compute
as many tone-curve as weight maps, we apply the tone-curves to
the original image, and finally merge the tone-mapped images. We
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Figure 1. Original image (left). the iterates from the gradien descent (top) and the weight maps associated to these iterates (bottom).

now explain each of the different stages in detail.

where the initial condition is Lk=O(x) = Lo(x), f,J is the time step,
and RLk (x) indicates the contrast function

(4)

(6)

(5)H(I) = Iy(I),

Lk(X) _Lk+l(x)
Wk(x) --

- Lk(x)+£

and I is the normalized image and y(.) is a slope function with
y c:o: YL for small intensities, y c:o: YH for large intensities and a
smooth transition at J1 with a slope M. All these parameters are

where

Tone-mapping
In this section we explain briefly the tone mapping operator

proposed by Cyriac et. al [3]. The method finds an adaptive non-
linear transform that performs constrained histogram equalization
which is based on the psychophysical study [12] showing subjec-
tive preference to images with flat lightness histogram. Complete
histogram equalization achieved by an intensity transform based on
the cumulative histogram may produce sharp changes in contrast
and spurious colors. Thus, Cyriac et al. [3] modeled the trans-
formation function as a smooth approximation of the cumulative
histogram based on natural image statistics. Natural images on
average has a triangular shaped luminance histogram in log-log
coordinates[ll, 19]. Thus, the cumulative histogram (H) can be
modeled as a piecewise linear function with two slopes (YL and YH)
and can be approximated in linear-linear coordinates as follows:

We can use these two facts to create a set of weight maps in
the following way

where £ is a very small value that controls division by 0 for the
pixels that already reached the 0 value. We convolve the weight
maps with a Gaussian Kernel to avoid problems in the edges, and
we normalize them such as Lk Wk(x) = 1.

Due to the construction of Eq. 4, the first weight map will
contain most of the information from the dimmer parts of the image
(whenever a region gets to black all its subsequent weight maps are
0), while the latter ones will contain information about the lighter
parts of the image. This is also shown in Figure 1 where we show
an original image, the iterates of the variational formulation (top)
and the different weight maps (bottom).

(3)RLk(X) = Ly w(x,y)s (Lk(x) _Lk(y)) .
Ly w(x,y)

E(L) = % !n(L(x) -Lo(x))2dx+ ~ !n(L(x) - J1ddx

H !nL(X)dX-T) J !n,OJ(x,y)IL(X)-L(y)ldXdy (1)

In the case where the value of any pixel x at any iteration is negative
we clip it to O. It is clear that, due to the influence of the r
parameter, this gradient descent will tend towards a black image.
Also, it will do so by firstly dropping to zero those areas of the
image that were dimmer. As stated at the beginning of the section,
the reason behind this second fact is the behaviour of the local
contrast term: it will be high for a dark object present in the
properly illuminated part; in contrary, it will be low for any object
of the same luminance found in the dim part of the image.

Variational region split
Given an original RGB color image Isrgb' we perform its

linearization to obtain I (i.e. I = p.2b). We then compute itssrg
luminance Lo and minimize the following image energy functional

where Q is the image domain, a,j3,T) , and r are positive scalars,
Lo is the luminance of the original image, J1Lis the mean of the
luminance of the original image, and OJ(x,y) is a Gaussian kernel.
This functional has its roots in [1, 2] where it was shown that when
r = 0 it follows perceptual principles and has ties with the Retinex
theory of color vision. Also, it has been proven useful for color
gamut mapping [26, 27] and image dehazing [8, 9].

The minimization of Eq.l will decrease the original values
of the image (third term of the functional) while at the same time
it will maximize the local contrast of the image (last term of the
functional), and it will not move far away from the original image
and the original mean (first two terms of the functional).

We compute the steady-state ofEq.l through gradient descent
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computed from the cumulative histogram of the input intensity
image. Finally, the tone mapping is given by:

where TM 0(·) is the application of the tone-mapping explained
in Eq. 7 and I is the linear version of the original image as stated
before. Linearization is important since the selected tone-mapping
operator works on linear data.

Finally, we combine the different tone-mapped images taking
into consideration the respective weight maps to obtain our final
image

where Paro = Pa~ and Pa,.N = Parb. We use here an abuse of
notation to mark that the same interpolation is done for the four
different elements of the set. We select this interpolation since,
apart from the first weight map that mostly contains the information
about the dim region, all the others maps tend to have most of their
information in the properly lit area.

Then, for each set of parameters we obtain the tone mapped
image

where I is the linear version of the original image (as detailed
at the beginning of the approach). Then, for each of the two
sets we compute the four parameters of the previously explained
tone-mapping method, therefore obtaining two different sets of
parameters Para = {Ma, If, 11f,J-la}, and Parb = {Mb, 11'., yt,J-lb}.
The parameters with superindex a will properly tone-map the
darker part of the image, while the parameters with superindex b
will properly tone-map the brighter parts of the image.

Let us consider now that we have N weight maps. Then, to
obtain N different parameters sets we interpolate the sets Pa~ and
Parb in the following way:

Quantitative results
In this subsection we quantitatively compare our approach

to the state-of-the-art approaches considering two different met-
rics proposed in [24]: the Lightness Order Error and the Visual
Information Fidelity.

The Lightness Order Error metric evaluates the violation of
the order statistics in the processed image. Ideally, the order
between the pixels of the original image should be maintained in
the processed image. This is crucial in two aspects. First, we do
not want an original dark region to become lighter than an original
light region. Second, the order between the pixels is also violated
when the processed image presents halos or ghosting effects. The
Lightness Order Error metric is defined as follows [24]

where Q is the image domain, EB is the exclusive or operator, Lo

Results
We have compared our approach both quantitatively and qual-

itatively versus the current state-of-the-art methods: Li and Wu
[15], Ying et al. [24], Dong et al. [4], the Fu et al. variational
model [7], the Multi-scale Retinex approach (MSRCR) [17], the
Naturalness preserving method (NPE) [23], the Fu et al. fusion
scheme [6], and the LIME method [10]. We have considered two
different datasets: the Vonikakis et al. dataset [22], and the Li
and Wu [15] dataset. The former dataset consists of 23 images
with size 2304 x 1728, while the latter consists of 38 images with
sizes ranging from 1400 x 1049 to 250 x 190. All our results
were obtained with a fixed set of parameters: 1) = 1, a = 0.5,
j3 = 0.5, r = 2, and threshold = 0.75. The standard deviation of
the gaussian kernel was set to 1/3 of the largest dimension of the
image.

LOE= I~I In In (U(Lo(x),Lo(y))EBU(Lp(x),Lp(y)))dxdy (12)

Qualitative results
Figure 2 shows from left to right the original image, the NPE

method [23], the fusion scheme method [6] and our result. We
want to note that although all the methods are able to recover
most of the information of the girl's head, our method is the only
one that prevents a strong red cast to appear in her face. Figure
3 presents from left to right the original image, the Multi-scale
Retinex approach [17], Fu et al. variational model [7], and our
result. We can see that the Multi-Scale Retinex approach creates
artifacts, specially in the bottom part of the image, while the
varional model of [7] is not able to fully recover the face of the
woman. In contrast, our method is able to properly recover her
face without introducing artifacts in the image.

Figure 4 shows from left to right the original image, the Dong
et al. method [4], the Fu et al. variational model [7], and our result.
In this case, our method is able to represent a scene with natural
and realistic colors while recovering details of the tree in the front,
contrary to the results of the other two appraches, in which the
t-shirt ofthe girl shows unrealistic effects. Finally, Figure 5 shows
from left to right the original image, the LIME method [10], Ying
et al. [24], and our result. in this case we can see that the LIME
method washes the image and over-enhances the noise. Both the
approach of Ying et al. and our result are able to provide a good
result, however our result preserves better the shadow effect on the
face of the man.

(7)

(8)

(9)

(10)

(11)

I~M = TMO(I;Pa,k)

k k-I (Pa,.N -Pa,k-I)
Par = Par + ------

2

Seta = {I(x)IWI(x):2: threshold}
Setb = {I(x)IWI(x) < threshold}.

TMO(I;M,YL,YH,J-l) = Iy(I).

Ifinat(x) = ~)~M(X)' Wk(x).
k

Merging
The most straightforward idea at this step would be to gen-

erate a set of improved images by applying different tone-curves
to the original image; each of them obtained from the pixels be-
longing to each particular weight map. However, this solution is
problematic when the weight maps represent a small number of
pixels. A clear example of this are the maps W5 and W6 from
Figure 1. Therefore, to avoid this problem we directly obtain only
two tone-curves (one for the brighter parts and one for the dimmer
parts), and then we interpolate the two to generate the rest of the
tone-curves needed. To this end, we consider the first weight map
Wl(x), and depending on its values, we divide the image into two
different sets as follows:
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Figure 2. From left to right: Original image, Naturalness preserving method (NPE) [23J, Fu et al. fusion scheme [6J, and our result.

Figure 3. From left to right: Original image, Multi-scale Retinex approach (MSRCR) [17], Fu et al. variational model [7J, and our result.

is the lightness of the original image, Lp is the luminance of the
processed image and

Due to the high computational cost of the LOE metric, we
follow the recommendations of [24] and we compute the results
on a down-sampled version of the images containing the pixels of
100 rows and 100 columns. Results for this metric computed as
the mean over all the images in the dataset are presented in Table 1.
Our method outperforms all the others, being the method of Ying
et al. [24] and the Fusion-based method of Fu et al. [6] the closest
to our results.

We consider the Visual Information Fidelity (VIF) metric to
measure the amount of distortion introduced by the different meth-
ods. The VIF quality metric (VIF) was proposed by Sheikh and
Bovik in [20]. It can be understood as the ratio between the dis-
torted image information and the reference image information. The
reference image information is the mutual information between the
reference image and the output of a process that estimates how this
reference image is viewed by the Human Visual System (HVS).
The distorted image information is the mutual information between
the reference image and the output of the same HVS process, but
considering the distorted image. Mathematically,

U _{I ifp?q
(p,q) - 0 'f

1 p<q

VIF = I(R;F)
I(R;E)
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(13)

(14)

Vonikakis et al. Liand Wu
Li and Wu [15] 1059.30 845.11
Ying et al. [24] 257.89 269.25
Dong et al. [4] 876.22 827.Q3
Fu etal. [7] 562.84 313.00
MSRCR [17] 2717.70 2308.70
NPE [23] 818.50 845.11
Fu etal. [6] 480.84 497.67
LIME [10] 1293.80 1128.10
Our approach 211.23 244.81

Table 1: Results for the Lightness Order Estimation metric
computed as the mean over all the images in the dataset.

where R is the reference image, D is the distorted image, E =

HVS(R) and F = HVS(D) are the outputs of the HVS process
explained above.

In our experiment, we follow the approach detailed in [24],
and therefore we consider as reference image the output of the
different methods and as distorted image the original one. In our
case, a higher value on the VIF metric indicates that the output
of the method is respectful to the original content of the image.
Results for this metric computed as the mean over all the images
in the dataset are presented in Table 2. Our method is the most
respectful one to the original content for the Vonikakis et al. dataset
followed by the methods of Ying et al. and the Fusion-based
method ofFu et al. [6]. In the Li and Wu dataset our method ranks
fourth but the difference to the method of Ying et al. [24] is less
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Figure 4. From left to right: Original image, Dong et al. [4J, U and WU [15J, our result.

Figure 5. From left to right: Original image, LIME method [1OJ, Ying et al. [24J, our result.

Vonikakis et al. Liand Wu
Li and Wu [15] 0.6335 0.7892
Ying et al. [24] 0.7781 0.9572
Dong et al. [4] 0.5158 0.6479
Fu etal. [7] 0.6682 0.8250
MSRCR [17] 0.4312 0.8456
NPE [23] 0.7065 0.9491
Fu etal. [6] 0.7369 0.9376
LIME [10] 0.3575 0.6104
Our approach 0.8866 0.8783

Table 2: Results for the Visual Information Fidelity metric com-
puted as the mean over all the images in the dataset.

than 0.08.

Conclusions
We have presented a method that, given a LDR backlit image,

recovers the information that was not visible in the dark regions
without losing information in the already well-exposed parts of
the image. Our method first computes a set of weight maps from
the iterates of the gradient descent of a energy functional. Then,
it computes a set of tone-mapped results using the method of [3].
Finally, the tone-mapped images are combined with the weight
maps to output a final image. We have shown that our method
outperforms the state-of-the-art both visually and considering the
LOE metric. Also, our approach is comparable with the state-of-
the-art for the VIF metric. Further work will by two fold. First,
we plan to perform a set of subjective experiments to validate the
numerical results obtained by our method. Second we will deal
with the automatic adaptation of the different parameters in an
image-based manner to improve the current results.
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