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Abstract: Images captured under hazy conditions (e.g. fog, air pollution) usually present faded
colors and loss of contrast. To improve their visibility, a process called image dehazing can be
applied. Some of the most successful image dehazing algorithms are based on image processing
methods but do not follow any physical image formation model, which limits their performance.
In this paper, we propose a post-processing technique to alleviate this handicap by enforcing the
original method to be consistent with a popular physical model for image formation under haze.
Our results improve upon those of the original methods qualitatively and according to several
metrics, and they have also been validated via psychophysical experiments. These results are
particularly striking in terms of avoiding over-saturation and reducing color artifacts, which are
the most common shortcomings faced by image dehazing methods.
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1. Introduction

Images captured under adverse weather conditions, such as for or smog, present distorted colors
and a loss of contrast, minimizing the quality of the captured image. Different physical models
aiming at describing this phenomenon have been proposed, the more widespread being the one
by Koschmieder [1] .
Koschmieder’s model teaches us that the hazy image I depends on the clear image J (i.e.,

how the image would look without atmospheric scatter), a transmission map that only depends
on the image depth and is therefore equal for the three channels t, and the airlight color A.
Mathematically, the model is written as

Ix, · = txJx, · + (1 − tx)A, (1)

where x is a particular image pixel, and Jx, ·, I x, · are respectively the 1-by-3 vector of the R,G,B
values at pixel x of the clear and the hazy image. Let us note here that Koschmieder’s model is a
relatively simple model of the atmosphere. It is by no means a complete model, as the optical
scattering is extremely complex, due to the wide variability of particle distributions within the
atmosphere. This said, even if it relies on physical assumptions that will not always hold, it
provides us with a mathematically tractable setting. For this reason, this model is used in almost
all the image dehazing literature, and therefore it will be also considered in this paper.

There exists a large number of image dehazing methods based on imposing Eq. 1 as a constraint
in the solution. However, there also exists a second type of method that is based on applying
image enhancement or image fusion techniques to the original hazy image. This second type
of method has been proven effective for removing the haze on images, but it does not include a
reliable physical model. In this paper we propose a post-processing procedure for this second
type of method. Our goal is to obtain a final result as close as possible to the original algorithm
solution, but accomplishing the constraints given by Eq.1. Our proposed solution can therefore
be understood as a bridge linking the two different type of methods.
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This paper is an extension of our conference work presented in [2]. In particular, we have
modified our original formulation to constrain the transmission result by a DCT-basis (effectively,
the transmission is modelled to be smoothly varying across the scene/image), and we have
performed a much larger number of experiments, where we numerically prove that this new
approach outperforms both the original non-physics dehazing methods and our previous work
presented in [2].

2. Related work

Image dehazing has arisen as a prolific topic of research in recent years. This increased interest
on research in image dehazing is mostly related to its importance as a pre-processing tool for
computer vision methods that need to work in the wild. Some particular examples are surveillance
and tracking through CCTV cameras, or self-driving of vehicles and drones.

In this section we will divide the different methods proposed between Physically-based methods
and Image processing methods.

Physically-based methods: These methods search for a single transmission t and an airlight
vector A. Once these two quantities are found, they obtain the haze-free image Jx, · by inverting
Eq.1. This said, solving for t and A is an underconstrained problem but can be solved if
assumptions are placed on the form of the final solution. Some examples of this type of method
are [3], [4], [5], or [6]. A special mention should be given to the Dark Channel prior [7] (probably
the most used image dehazing method), where the authors assume that the minimum of an image
region over the three color channels should be zero. The Dark-channel prior has been largely
extended and improved, for example in [8–13]. Learning-based techniques have also been studied
for this case. Some examples of them are [14], [15]. Recently, some deep learning techniques
have also been used [16], [17].

Image processing approaches: These methods aim to modify the original image to com-
pensate for the visual effect of haze on images. In particular, these methods usually focus on
the amount of contrast, saturation or other possible indicators of the presence of haze, and try
to compensate for them. For example, [18] proposed to remove contrast loss in hazy images
through a linear model of the presence of excessive brightness, based on the ratio between local
mean and standard deviation. In [19, 20] the authors use a multiscale image fusion approach
in which they blend several images derived from the input, such as a white-balanced and a
contrast-enhanced version of it. Different approaches based on models of the Human Visual
System (HVS), such as Retinex, have also been proposed in [21–26]. [27] proposed a combination
of the last two approaches: a variational formulation based on the HVS is combined with a
fusion-based approach. Very recently a dual relation between image dehazing and Retinex has
been proven [28]. This relation proves that any threshold-free Retinex method applied on inverse
intensities performs image dehazing. Finally, machine-learning techniques have also been used
for this type of method. For example, a haze density predictor based on natural scene statistics
was presented in [29].

There are very few methods focusing on the removal of artifacts for image dehazing. Matlin
and Milanfar [30] proposed an iterative regression method that simultaneously performs denois-
ing and dehazing. Li et al. [31] proposed to decompose the original image into high and low
frequencies, performing image dehazing only in the low frequencies, thus avoiding blocking
artifacts. Chen [32] applied both a smoothing filter for the refinement of the transmission and an
energy minimization to avoid the appearance of gradients that were not presented in the original
image.



3. Coupled iterative minimization for image dehazing

In this paper we focus on the post-processing of dehazing methods that do not enforce a physical
model, i.e. mostly those listed as image processing approaches in the previous section. Our goal
is that, given an original hazy image I and the solution of a dehazing method that does not fulfil
a physical model Jnp , we obtain a new dehazing result Jour that:

• Accomplishes the constraint given by Eq.1

• Is as close as possible to the initial solution Jnp .

The most straightforward approach to accomplish both these requirements is to minimize the
error in Eq.1 when the result of the image processing method Jnp is considered. As an aid to our
derivations below, we will represent colour and scalar images as respectively N-by-3 and N-by-1
matrices (where N denotes the total number of pixels in the image). Mathematically, we can
write this minimization in matrix form as

{Aour , tour } = argminA∗ ,t∗ ‖(1 − t∗) · A∗ − I +T ∗ · Jnp ‖2, (2)

where 1 is an N-by-1 vector that has a value of 1 in every entry, t∗ is an N-by-1 vector that
represents the transmission, A∗ is a 1-by-3 vector that provides us with the airlight, I , Jnp are
N-by-3 matrices representing the input image and the non-physical dehazing solution, N is the
number of pixels, and T ∗ is a N-by-N matrix that has zeros everywhere except in the diagonal,
where it has the values of t∗.

Intuitively, it is easy to see that we need to perform the minimization of Eq.2 iteratively in two
different dimensions. In particular, when looking for tour we need to perform the minimization
for each pixel x of the image over the three color channels, while when looking for Aour we need
to perform the minimization for each color channel c over all the pixels.
In the next paragraphs we explain how we perform each of these two minimizations.

Minimizing for tour : Let us start supposing that we have an original value for Aour . This is a
standard case in many image dehazing works, where it is usually supposed either A = [1,1,1]
or A = [max(I·,R),max(I·,G),max(I·,B)]. Let us denote as Λ the N-by-3 matrix obtained by the
replication of Aour for the N image pixels. Then, our minimization for the transmission can be
rewritten as

tour = diag(T ) | T = argminT ∗ ‖(I − Λ) −T ∗(Jnp − Λ)‖2. (3)

Note (I − Λ) is an N-by-3 matrix as is (Jnp − Λ) so the single solution of Eq.3 involves scaling
the rows of (Jnp − Λ) to match (I − Λ). This minimization has the same structure of the one
considered for the Alternative Least Squares method [33], and can be therefore constrained by
the use of some basis function. Therefore, we impose a further constraint for tour , specifically
that the per pixel multiplication implied by T should be smooth. We implement smoothness by
enforcing T to be represented as a linear combination of the first few terms in a DCT expansion.
The new smooth adjustment, that we call TDCT , is calculated in 3 steps. First we map the (I −Λ)
and (Jnp − Λ) to images (with P × Q pixels) (I − Λ)(x, y) and (Jnp − Λ)(x, y) (underscoring
remarks that these are RGB images, each pixel has 3 numbers) and (x, y) indexes the pixel
location. Now we find the image that minimizes

T(x, y) = argminT ∗(x,y)‖(I − Λ)(x, y) − T∗(x, y)(Jnp − Λ)(x, y)‖2,

s.t . T∗(x, y) =
K∑
k=1

αkGk(x, y). (4)



where Gk(·) represents the kth DCT basis image. Finally, we map the recovered image back to
the diagonal matrix representation: T(x, y) → TDCT .
The computation of the weight vector α = {α1, · · · , αK } in Eq. 4 is obtained as follows.

Let (Jnp − Λ)j denote the jth color channel of the image stretched out as a vector, and let
Gk denote the kth basis image stretched out as a vector. Then, for each of the three color
channels we calculate K vectors as the following pixel-wise products: Hj ,1 = (J

np − Λ)j · G1,
Hj ,2 = (J

np − Λ)j · G2, · · · , Hj ,K = (J
np − Λ)j · GK . With those vectors, we form a 3N × K

matrix H -where N is the number of pixels- as

H =


Hr ,1 · · · Hr ,K

Hg,1 · · · Hg,K

Hb,1 · · · Hb,K


. (5)

Similarly, we create a 3N × 1 vector u as

u =


(I − Λ)r

(I − Λ)g

(I − Λ)b


. (6)

Finally, the weight vector α is obtained as follows

α = H+u (7)

where + denotes the pseudo-inverse.

Minimizing for Aour : Let us now focus on the minimization of Aour given a value for tour .
In this case, let us denote as Tour the N-by-N matrix that has zeros everywhere except in the
diagonal, where it has the values of tour . In this way, the minimization can be rewritten as

Aour = argminA∗ ‖(1 − tour ) · A∗ − I −Tour · Jnp ‖2. (8)

For performing this last minimization we individually minimize the error for each color channel.

Performing the iterative minimization: The previous minimizations are finally combined in
an iterative manner. This means the value found for tour in an iteration (it) is used for obtaining
Aour at the same iteration, and this latter value is used in the following iteration (it + 1) for
obtaining the new value of tour .
Once the method is run for the desired iterations or the desired stopping criteria, our final

result is computed as

Jour
x, · =

Iorx, · − (1 − tourx )A
our

tourx
(9)

where x is a particular image pixel, and Jour
x, · , Iorx, · are the 1-by-3 vectors of the R,G,B values at

pixel x.
A pseudocode for our method can be found in Algorithm 1.



Algorithm 1 Our algorithm
• Input: The original hazy image Ior and the output of a non-physical dehazing method
Jnp .

• Define A0 = [1,1,1].

• Starting with iteration it = 0, do

1. Obtain tour (i t) using Eqs. 3, 4.
2. Obtain Aour (i t) using Eq. 8.
3. Update it. it = it + 1

• Until a number of iterations is performed or the difference between two consecutive
iterations is smaller than a predefined tolerance value.

• Output: Jour
x, · computed using Eq. 9

4. Experiments and results

We have performed different experiments to address the performance of our approach. First,
we start by studying how our iterative minimization for tour and Aour affects the output image
Jour . Then, we show some qualitative results where our method clearly outperforms the
original dehazing method. Later, we show how our method improves the original dehazing ones
quantitatively, both considering reference-based and non-reference image metrics. At the end of
the section we also validate our method through a psychophysical experiment where observers
were asked to select their preferred image. In all this section, we will compare our method against
the following original dehazing algorithms: the EVID method [21], the FVID method [27], the
Choi et al. method [29], the Wang et al. method [26], and the use of two Retinex algorithms
-SRIE [34] and MSCR [35]- as dual solutions for the dehazing problem as suggested in [28].
For our method we have considered 10 iterations. The number of DCT basis considered for our
coupled-DCT method is 10 -i.e. we compute DCT basis up to order 4- unless otherwise stated.
Also, we set A0 = [1,1,1] for all the quantitative and psychophysical evaluations.

4.1. On reaching steady state for image Jour

Our minimization looks for tour and Aour , but we are interested in the image Jour as our final
result. Therefore, it is natural to wonder about the effect the iterative minimization of tour and
Aour has in the image Jour . In particular, it will be interesting to study how the image Jour

reaches steady state. To this end Figure 1 shows the difference between two consecutive iterations
of the output image Jourx,c -where c denotes the R,G,B channels- for the set of 500 hazy images
proposed in the FADE dataset by Choi et al. [29]. We compute this difference in the Mean Square
Error (MSE) form, which for iteration k is defined as

MSE(k) =
1

3 · N

3∑
j=1

N∑
i=1
(Jouri, j (k + 1) − Jouri, j (k))

2, (10)

where N is the total number of pixels. For visualization purposes, we show the cube root of the
MSE in the figure. We can clearly see in the figure that for all the methods the difference ends
up being negligible, signifying that in practice the image Jour reaches steady state without any
significance problem.



Fig. 1. Study about the effect of the iterations on the steady state of Jour for different
original algorithms in the 500 images of the dataset in Choi et al.. We can clearly see that
for any original algorithm Jour reaches steady state.



RET-SRIE RET-MSCR Wang et al.

NIQE BRISQUE NIQE BRISQUE NIQE BRISQUE

Original method 3,12 24,51 4,37 27,30 4,15 26,63

Coupled [2] 3,01 23,46 3,86 24,06 3,81 22,83

Coupled-DCT 3,47 20,38 3,54 21,75 3,50 20,42

FVID EVID Choi et al.

NIQE BRISQUE NIQE BRISQUE NIQE BRISQUE

Original method 3,48 19,34 3,66 20,90 3,63 23,53

Coupled [2] 3,46 20,04 3,59 20,56 3,57 22,19

Coupled-DCT 3,39 19,80 3,47 19,57 3,58 22,52

Table 1. Results reported as the mean for all the 500 images in the Choi et al. dataset.

4.2. Qualitative results

Figure 2 presents some visual results for our approach with regards to the 6 non-physics methods
selected, and to two different airlights: A0 = [1,1,1] and A0 = [max(I·,R),max(I·,G),max(I·,B)].

In terms of the starting airlight A0 (last two columns of the Figure), we can clearly see that our
approach gives very similar results for both of them, therefore showing that our approach is very
robust in this respect.
Looking now at the different algorithms -each algorithm is a different row in the Figure-, we

can clearly see that in the case of the Choi et al. algorithm our method is able to correct the
excessive saturation presented in the field, outputting more natural colors in the image. In the
case of the EVID algorithm, our approach is able to correct the over-contrast introduced by the
non-physics method in the cow, grass and rocks. Equivalently, the over-contrast is also corrected
for the Wang et al. method, especially noticeable in the tree and the close vegetation, and the
Ret-MSCR method in the grass and close-by ducks.
In the case of the FVID algorithm we can clearly see that our approach corrects the artifacts

appearing in the sky in the original method. Similarly, the Ret-SRIE mehod presents a halo
artifact around the main building in the image that is clearly alleviated by our approach.
In summary, this Figure presents the two main advantages of applying our post-processing

approach. First, it is able to correct over-saturation and over-contrast problems, and second, it is
able to alleviate the artefacts that can appear when dehazing an image.

4.3. Quantitative results

4.3.1. Non-reference metrics

In this subsection we study the performance of our method when considering non-reference
based metrics. To this end, we consider the set of 500 hazy images proposed by Choi et al.
in [29]. We evaluate our results with respect to two very well-known non-reference image metrics:
NIQE [36] and BRISQUE [37]. For both metrics, a smaller number means a better method.
Table 1 shows the results for the 6 methods considered in this paper. We can see how the simple
coupled-method is already able to outperform the original method for almost all of those tested.
Our Coupled-DCT approach drops the error metrics even further, and outperforms the original
method and the coupled approaches in 10 and 9 out of 12 cases, respectively.



Fig. 2. Qualitative results for our approach, for 6 different non-physical dehazing methods
and 2 different starting airlights. Our method improves all the original methods. Furthermore,
our results for both airlights are very similar, showing the robustness of our approach.



RET-SRIE RET-MSCR Wang et al.

CID ∆E00 VIF CID ∆E00 VIF CID ∆E00 VIF

Input 0,577 24,097 0,388 0,577 24,097 0,388 0,577 24,097 0,388

Original method 0,380 13,093 0,725 0,680 23,790 1,763 0,492 16,593 1,514

Coupled [2] 0,380 13,092 0,724 0,624 22,706 1,558 0,466 16,184 1,392

Coupled-DCT 0,376 13,342 0,794 0,604 22,463 1,291 0,432 15,977 0,924

FVID EVID Choi et al.

CID ∆E00 VIF CID ∆E00 VIF CID ∆E00 VIF

Input 0,577 24,097 0,388 0,577 24,097 0,388 0,579 24,086 0,380

Original method 0,439 16,877 0,644 0,427 15,485 0,836 0,546 19,990 0,651

Coupled [2] 0,429 16,404 0,638 0,397 14,251 0,807 0,556 20,742 0,622

Coupled-DCT 0,429 13,388 0,661 0,393 14,215 0,820 0,533 19,794 1,072

Table 2. Results reported as the mean for all the 23 images in the Middleburry D-Hazy
dataset.

4.3.2. Reference metrics

In this subsection we focus on reference-based metrics. In this case, we need a dataset that
presents pairs of hazy-clean(ground-truth) images. We have selected to use the Middleburry
set of the D-Hazy dataset [38]. In this case, images are indoor, and for this reason we run our
method with a higher number of DCT basis: 55 (i.e. we compute DCT basis up to order 10). In
this subsection we look at 3 different metrics: the CID [39], which is a color extension of SSIM,
the perceptual color difference ∆E00 , and the Visual Information Fidelity (VIF) metric [40]. In
the case of the CID metric and the ∆E00 , lower values mean better methods. For the VIF metric,
the closer to 1 is the value, the better the method -as this will mean that both result and the
ground-truth are equal in terms of the visual information present in the images-. A VIF value
larger than one means that the result is over-enhanced, while VIF values smaller than 1 mean that
the result is under-enhanced.

Results are shown in Table 2. We can clearly see that our Coupled-DCT approach outperforms
all the others in 16 out of 18 cases. Also, the simple Coupled method outperforms the original
dehazing method in 10 cases and draw with it in another 3 cases (see the results for RET-SRIE).

4.4. Preference ranking

We also performed a psychophysical experiment for which details are given below.

4.4.1. Subjects

Twelve subjects completed the experiment. None of them is an author of the paper. All observers
were tested for normal color vision using the Ishihara color blindness test. Ethics was approved
by the Comité Ético de Investigación Clínica, Parc de Salut MAR, Barcelona, Spain and all
procedures complied with the declaration of Helsinki.



Fig. 3. Images uses in the psychophysical experiment.

4.4.2. Apparatus

The experiment was conducted on an AOC I2781FH LCD monitor set to “sRGB” mode with a
luminance range from 0.1cdm−2 to 175cdm−2, with spatial and temporal resolutions of 1920 by
1080 pixels and 60 Hz. The display was viewed at a distance of approximately 70 cm so that 40
pixels subtended 1 degree of visual angle. The full display subtended 49 by 27.5 degrees. The
decoding nonlinearity of the monitor was recorded using a Konica Minolta LS 100 photometer
and was found to be closely approximated by a gamma function with an exponent of 2.2. Stimuli
were generated under Ubuntu 15.04 LTS running MATLAB (MathWorks) with functions from
the Psychtoolbox [41, 42]. The experiment was conducted in a dark room.

4.4.3. Stimuli

25 randomly selected images were taken from the FADE dataset [29]. They are shown in Figure
3. For each image, the six original dehazing methods listed at the beginning of the section were
computed. Then, the Coupled-DCT approach proposed in this paper with 10 DCT basis -i.e. the
same parameters used for this dataset before- was also computed for each of the original methods.

4.4.4. Procedure

The experiment was independently run for each of the 6 original dehazing methods. The dehazed
images -the result of the original method and the result of our coupled-DCT approach- were
viewed on either sides of the original hazy image. Subjects were asked to select the image that
they preferred out of the two dehazed images. The total number of comparisons was 150 -25
comparisons for each of the 6 original dehazing methods. On average, the experiment took
around 25 minutes.

4.4.5. Analysis of the results

We have analyzed the result of our experiment in terms of the Thurstone Case V Law of
Comparative Judgment. Figure 4 presents the results for the whole set of 150 comparisons. We
can clearly see that our approach is preferred over the original non-physical dehazing methods,
with statistical significance.



Fig. 4. Results of the psychophysical experiment using the Thurstone Case V test for the
whole set of 150 comparisons.

Results for each individual original algorithm are presented in Figure 5. We can clearly see
that our DCT-coupled approach is statistically preferred over the original method for all the cases,
showing that it generalizes very well to different non-physical dehazing methods. These results
also validate the effectiveness shown by our coupled-DCT method for most of the image metrics
cases tested.

5. Conclusions

We have presented an approach that induces a physical behaviour to non-physical dehazing
methods. Its main notion is the consideration of an iterative coupling of the color channels,
which is inspired by the Alternative Least Squares (ALS) method. We have shown how our
method outperforms the original non-physical dehazing method qualitatively, quantitatively -both
in terms of reference and non-reference metrics-. Finally, our method was also validated using
psychophysical tests.
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Fig. 5. Results of the psychophysical experiment using the Thurstone Case V test for each of
the non-physical dehazing methods considered in this work.
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