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Abstract We propose a method for color dehazing with four main characteristics: it does
not introduce color artifacts, it does not depend on inverting any physical equation, it is
based on models of visual perception, and it is fast, potentially real-time. Our method con-
verts the original input image to the HSV color space and works in the saturation and value
domains by: i) reducing the value component via a global constrained histogram flattening,
ii) modifying the saturation component in consistency with the previous reduced value, and
iii) performing a local contrast enhancement in the value component. Results show that our
method competes with the state-of-the-art when dealing with standard hazy images, and out-
performs it when dealing with challenging haze cases. Furthermore, our method is able to
dehaze a FullHD image on a GPU in 90 milliseconds.

Keywords Image dehazing · Color image processing · Vision models

1 Introduction

Atmospheric phenomena such as fog or haze tend to scatter light, often degrading the vi-
sual quality of images acquired outdoors. Objects that are further away appear to vanish or
melt into the horizon. Kochsmieder [24] modeled this effect as directly proportional to the
distance of the object from the observer, and proposed the following light propagation law:

I(x) = t(x)J(x) + (1− t(x))A, (1)
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Fig. 1: An example of artifacts appearing in current image dehazing methods. a) Original
image b) He et al. [21], c) Meng et al. [33], d) our result.

where in terms of image processing, x represents a pixel location, I(x) is the intensity cap-
tured by detectors within the camera, J(x) is the radiance in a hypothetical haze-free scene,
t(x) is the transmission of light in the atmosphere, inversely related to the scene’s depth,
and A is the airlight, a vector quantity describing the predominant color of the atmosphere.

Most outdoor computer vision systems, performing for instance tracking or surveillance,
assume images acquired under good weather conditions. In such scenario, no scattering
happens, i.e. t(x) ≡ 1, and the image corresponds to the scene radiance, I(x) = J(x).
However, the assumption that the section of atmosphere lying in between the camera and the
objects is completely transparent is often not realistic. The task of removing that degradation
produced by the atmosphere is known as image dehazing.

A great progress has been achieved in recent years towards the goal of effectively elimi-
nating haze or fog from images. Several different general approaches have appeared (see
Related Work below), but the predominant strategy is to try to recover the radiance J(x)
from the acquired intensity through inversion of the physical model in Eq. (1). This requires
first to estimate the haze distribution across the scene, which should be inversely related to
transmission t(x), and also the airlight illuminant A . Once estimates for t(x) and A are
available, a clean image is readily obtained by inverting Eq. (1):

J(x) ≈ I(x)−A(1− t(x))

t(x)
. (2)

Unfortunately, the physical model described in Eq. (1) assumes that no noise is captured by
the imaging device. As discussed in [32], if we consider an extended model incorporating
noise η(x):

I(x) = t(x)J(x) + (1− t(x))A + η(x), (3)

the resulting solution is:

J(x) ≈ I(x)−A(1− t(x))

t(x)
− η(x)

t(x)
. (4)

Since transmission t(x) varies in [0, 1], and it is inversely related to depth in the scene,
we can conclude that in far away areas of the scene, noise will be strongly amplified. This
problem is exacerbated by the limitation that t(x) is a scalar quantity describing at the same
time the propagation of light in the different chromatic components. This unavoidably leads
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Fig. 2: The pipeline of our method.

to the appearance of color artifacts in such situations, and is also the reason why most of
current dehazing approaches find it difficult to deal with images containing sky regions.

This limitation may sometimes lead to a dehazed output of inferior quality than the original
image. We can visually verify the above observations in Figure 1, where we show the origi-
nal image and the result of two state-of-the-art methods: He et al. [21] and Meng et al. [33].
The output of the method developed in this paper is also introduced for comparison.

The main contribution of this paper is therefore the proposal of a new image dehazing tech-
nique that, rather than neglecting the presence of noise, attempts to recover a haze-free
image while reducing the disturbing chromatic artifacts typical of current approaches. The
proposed method operates in the HSV color space, and has the following features:

1. It does not introduce color artifacts, by-design.

2. It is based in vision science models and natural image statistics.

3. It does not depend on inverting any physical equation.

4. Its computational complexity is very low.

More in detail, we start by performing in the Value component a global transform aiming
to flatten its histogram. This global function is based on the statistics of natural scenes [12].
Next, we modify the Saturation component in order to keep the colorfulness of the scene.
This modification follows the ideas suggested in [36, 37] where authors state that stable
colorfulness may be a human color cue in hazy scenes. Finally, we perform local contrast
enhancement on the Value component based on contrast normalization [7, 9] in the retina
and following the principles of efficient coding [22]. Our proposed method only depends
on two straightforward parameters that can be tuned depending on whether the user wants
a saturated result and on whether the user wants a lower or higher contrast enhancement,
considering that some noise may appear when this parameter is too large. Therefore, our
method has a mechanism to control the magnification of noise or even blocking artifacts
when they are already present in the original image. A pipeline of the method is presented
in Figure 2.

The resulting technique is simple, robust to chromatic noise and potentially real-time. There-
fore, its reliability and efficiency makes it suitable to be introduced as a style option in any
digital camera. Furthermore, its GPU implementation only takes 90 milliseconds to dehaze
a FullHD image.
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Fig. 3: Comparison between a fog and a non-fog image in the HSV space. First two rows,
from left to right: Original image, hue, saturation and value. Last row: Histogram of dif-
ferences between the fog and the non-fog image. We can see that hue stays the same, while
saturation is always higher for the non-fog image, and value is always higher for the fog
image.

2 Related work

Many methods have appeared in the last years that attempt to remove fog from a weather-
degraded outdoor image. While the goal of all of these techniques is to enhance the visibility
of the input image, there are several substantially different ways to attack this problem. Here,
we divide these approaches into three categories: a) Physically-based methods, b) Machine
Learning methods, and c) Advanced Image Processing methods.

Physically-based methods: These are methods that attempt to solve for the haze-free image
J(x) in Eq. (1). Since inverting Eq. (1) poses an underdetermined problem, this requires
either to consider some kind of external extra information source or to make additional as-
sumptions on the model to constrain the space of possible solutions. Related to the former
possibility, there exist several methods that require several images captured in different con-
ditions [23,38,44,45]. When no extra information apart from the input image is considered,
the problem is usually referred to as single-image dehazing. The typical approach in this
case is to formulate some kind of restriction on the visual characteristics that a reasonable
solution can have. Examples of this category are [14], [39], or [50]. Probably the most pop-
ular technique in this category is the Dark Channel prior [21]. Much research on image
dehazing is based on this statistical cue, attempting to extend it in several directions to im-
prove it or make it more robust, see [19,25,28,33,46,55,63] for recent contributions in this
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direction. Finally, some other works combine the dark-channel cue with an extra correction
on the HSV color space, e.g. see [54] and [61].

Machine-learning approaches: These techniques are based on the incorporation of prior
knowledge, obtained from statistical observations of visual features on datasets of human-
labeled foggy and fog-free images. For instance, in [48] the authors study several haze-
relevant features, in order to establish a combination useful to learn a haze-removal regres-
sion model. The method in [63] learns a linear model of depth instead of a model of hazy
and haze-free images. To obtain depth map examples on which to train, the authors generate
synthetic depth images following the strategy outlined in [48]. The same approach has been
recently employed in order to generate enough examples to train a deep convolutional neural
network in [8]. Another interesting approach is that of [63], where the authors consider the
color attenuation prior. This prior assumes that in haze-free images the difference between
the saturation and the value components of the HSV correlates with the amount of haze
present in the scene. Also recently, a haze density predictor based on natural scene statis-
tics has been presented in [11]. After collecting a series of haze-relevant statistical features,
a haze-density map is computed by analyzing the Mahalanobis distance of the hazy input
features and the corresponding features of a dataset of haze-free images. Moreover, this ap-
proach can also be used to defog hazy images. Recently, Luan et al. [30] propose to study 7
different haze-relevant features based on image quality, and to learn a regression from these
features to obtain the transmission map.

Advanced image processing approaches: Although these methods are usually partly based
on a model such as the one in Eq. (1), they also rely in advanced spatially varying image
processing techniques. These approaches often study the local structure of the image, in
terms of the amount of contrast, saturation or other possible indicators of the presence of
haze, and try to compensate for this effect. For instance, the method in [47] is based on three
observations, namely: a haze-free image contains more local contrast than a hazy one, the
amount of haze in a region varies smoothly, and nearby pixels are usually located in the
same depth layer of the scene, i.e., they are equally affected by haze. These observations
are modeled through a cost function, the minimization of which maximizes contrast while
preserving depth smoothness, to yield a clean image. In [40] the authors propose a method
to remove contrast loss in hazy images through a linear model of the presence of excessive
brightness, based on the ratio between local mean and standard deviation. More recently,
in [1, 2] the authors use a multiscale image fusion approach in which they blend several
images derived from the input, such as a white-balanced and a contrast-enhanced version
of it. Approaches based on models of the Human Visual System, such as Retinex, have
also been proposed in [16–18, 53, 60, 62]. Recently, Wang et al. [59] propose that a linear
relationship exists in the minimum channel between the hazy image and the haze-free image,
and they consider this relationship to obtain haze-free images.

Still related to this set of approaches, the method proposed by Wang et al. [56] is the clos-
est to our approach. In [56] authors propose to perform a local content-adaptative histogram
equalization on the intensity followed by a saturation modification that depends on the inten-
sity contrast. Our approach follows a similar scheme, with the following main differences:
i) our approach performs a global histogram equalization in the Value component follow-
ing visual science results to avoid the appearance of artifacts [41], and ii) our modification
of the saturation is constrained to not modify the chroma of the original scene, following
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again the vision science literature [36, 37]. Finally, our model optionally performs a local
enhancement only as a last step. All these differences allow our method to be two orders of
magnitude faster than [56] already with the non-optimized Matlab version of our code. Let
us remark that our approach also provides more pleasant results and it is better than that of
Wang et al. as computed using several metrics, as we demonstrate in the Results section.

Remarkably, very few methods have addressed the need of removing artifacts while de-
hazing a degraded image. Matlin et al. [32] proposed to perform simultaneous denoising
and dehazing using an iterative, adaptive, non-parametric regression method. Li et al. [26]
introduced a contrast enhancement method that decomposes the image into high and low
frequencies, performing the enhancement only in the low frequencies, thus avoiding block-
ing artifacts. Also, Chen et al. [10] present a visual artifact suppression method for dehazing
by applying both a smoothing filter for the refinement of the transition and an energy mini-
mization in the recovery phase to avoid the appearance of gradients in the output image that
were not presented in the original image. Recently, Wang et al. [58] proposed to consider
the quad-tree method to perform a region decomposition. Then, based on this region decom-
position, the authors propose a method that does not present artifacts in the sky region.

Finally, very few real-time methods have been designed for the image and video dehazing
problem, e.g. [4], [13]. These two approaches are based on the Dark Channel Prior, where [4]
optimizes the medium transmission using a guided filter while [13] considers an optimized
reconstruction formula and operates in a multi-scale resolution. In both cases, the optimiza-
tion proposed results in an image of reduced quality when compared to the original Dark
Channel Method [21].

3 Joint global and local dehazing in the HSV space

The proposed technique is composed of five different stages. First, the original hazy image
is converted to the HSV color space. Second, we modify the Value component V (x), where
x denotes a particular pixel, by means of a global histogram equalization, but constrained by
some perceptually-inspired assumptions. The modified Value component Vglobal(x) is then
employed to modify the Saturation component S(x) in such a way that the colorfulness of
the output resembles the colorfulness of the original image. After S(x) has been modified,
we enhance again the Value component, this time through a local contrast operation that
is related to the contrast normalization process of the visual system. Finally, we map the
processed image back to the sRGB space, obtaining a haze-free version of the original hazy
input. In the rest of this section, we explain in detail every step of the method.

3.1 Conversion to the HSV color space

Hue, Saturation and Value (HSV) color space is a cylindrical color space widely used in
computer vision and image processing. It separates the color information of an image into
the dye of the color (hue component), the brightness of the color (value component), and the
intensity of the color related to an achromatic one (saturation component). Mathematically,
we can convert any sRGB color image into the HSV color space by a set of well defined
formulas (see Appendix).
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In Figure 3 we present an original haze-free image and the same image with a synthetic
fog layer on top of it. This haze layer has been simulated following the model proposed
in [52]. The corresponding H, S, and V channels of both images are shown in the first two
rows, and the histogram of their differences is displayed in the third row. Note that the
Hue component is circular and normalized between 0 and 1. Therefore, two pixels that lie
within a distance of 1 in this representation contain the same amount of hue. By looking
at the figure we can observe that in the HSV space, performing image dehazing amounts
to increasing the Saturation and decreasing the Value components, while leaving the Hue
component unaltered. For this reason, once the image is converted to the HSV space, our
method only modifies the Saturation and Value of the input hazy image.

3.2 Perceptually-based global constrained histogram equalization

From Figure 3, we can see that the Value difference is always negative. This indicates that the
histogram of the V component of a hazy image is typically skewed towards 1. Distributing
these values uniformly across the available dynamic range should thus contribute to increase
contrast and detail visibility in the image.

In [12], the authors proposed an adaptive non-linear transform that performs a histogram
equalization on an image I , subject to different perceptually inspired constraints. This trans-
form is formulated to be consistent with the efficient coding hypothesis, e.g., that the Human
Visual System uniformly distributes the input signal when presented with natural scenes
[41]. The slope function γ that determines the non-linearity of this transform, based on nat-
ural image statistics, is computed as follows:

γ(I(x)) = γH + (γL − γH)

(
1− I(x)n

I(x)n +Mn
lin

)
, (5)

where x is an image pixel. Here, the parameters γL, γH , and M can be estimated from the
cumulative histogram of the intensity image in log-log coordinates, see [12]; Mlin denotes
the exponential of M (since M is computed from log-luminance values), and n is a fixed
exponent that regulates the steepness of the curve (in practice, n = γL). The function
γ models this way the non-linearity as a smooth curve that approximates the cumulative
histogram. The parameter γL is replaced by 1.1 in case it is bigger than this value.

Let us note that the model in [12] expects a linear image as input. Therefore, we first need
to linearize the Value component of the input hazy image Vin by applying the inverse of
encoding gamma to obtain V lin = V 2.2

in . Once this correction is applied, we employ Eq. (5)
to perform a constrained histogram equalization on V lin:

Vglobal(x) = (V lin(x))
γ(V l

in(x)). (6)

3.3 Saturation modification through stable colorfulness

In [36, 37] the authors state that human observers are able to perceive the same level of
colorfulness independently from the quantity of haze present in the scene. In the HSV
color space, a measure related to colorfulness is the ChromaHSV , which is defined by
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the product of Saturation by Value. Note that ChromaHSV = S × V is different from
Chromaab =

√
a2 + b2, since in HSV the Value has an influence in the chroma, while in

Lab the Luminance has no influence.

According to the above observation, our goal is then to modify the Saturation component
while respecting as much as possible the ChromaHSV . This implies modifying the Satu-
ration component, but incorporating the global Value modification performed in section 3.2
Since ChromaHSV = S × V , we propose the following modification for the Saturation
component:

Snew(x) =

(
Vin(x)

Vglobal(x)
Sin(x)

)τ
, (7)

where in this equation we have introduced a power value of τ in order to avoid obtaining a
colorfulness smaller than the original (as we still need to apply the last stage of our method
consisting on a local value modification, which can further reduce the Value component).
Let us note that, in the case of considering a power value of τ = 1, the ChromaHSV
component of the dehazed image at this stage would be the same as the original, and if we
decreased the power value,ChromaHSV of the dehazed image would increase. An analysis
of the behaviour of τ is presented in section 4.1. As explained there, in all the results of this
paper we use τ ∈ [0.7− 0.8], as smaller values over-saturate the image and bigger values
are not able to recover enough saturation of the colors.

3.4 Contrast normalization for local value enhancement

The global non-linear transform performed by Eq. (6) may not be able to completely pre-
serve the local contrast in the Value component, leading to a loss of image detail. As a
result, in [12] the authors subsequently applied a local contrast normalization. This opera-
tion is modeled after findings from the neuroscience literature (see [7, 9, 22] and references
therein), that show that the human visual system implements a mechanism called contrast
normalization, by which the local contrast of a scene is normalized by a factor depending
on the standard deviation of the incoming light intensity.

Here, we follow the same approach and apply local contrast normalization on the Value
component, according to the following formula:

Vnew(x) = µ(x) + (Vglobal(x)− µ(x)) ·
k

σ
, (8)

where x is a pixel, µ(x) is the local mean of Vglobal, σ is the standard deviation of Vglobal,
and k is a constant that accounts for the desired level of contrast. The standard deviation is
replaced by 0.25 in case it is smaller than this value.

3.5 Back-conversion to the sRGB space

The remaining step consists of converting the processed image back to sRGB. As in the first
subsection, there is a set of well defined formulas (see Appendix) to achieve this. Let us note
that the processed image consists of the original Hue Hin, and the modified versions of the
Saturation Snew and the Value Vnew components.
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Algorithm 1 Proposed method
Input: sRGB hazy image.
1. Convert the input image from sRGB to HSV. Denote the three new channels as Vin, Hin and Sin.
2. Compute V lin = V 2.2

in .
3. Compute the cumulative histogram of V lin to obtain Mlin, γL, γH following [12].

4. Compute γ(V lin(x)) = γH + (γL − γH)

(
1− (V l

in(x))n

(V l
in(x))n+Mn

lin

)
.

5. Compute Vglobal(x) = (V lin(x))
γ(V l

in (x)).

6. Compute Snew(x) =
(

Vin(x)
Vglobal(x)

Sin(x)
)τ

.

7. Compute Vnew(x) = µ(x)+ (Vglobal(x)−µ(x)) · k
σ

, where µ(x) is the local mean and σ the standard
deviation of Vglobal.
8. Convert the image composed by Hin,Vnew , and Snew back to sRGB.
Result: sRGB dehazed image.

3.6 Summary of our approach

An algorithmic summary of our method is presented in Algorithm 1. All the operations of
our method have very low computational complexity and can potentially be implemented in-
camera. Let us discuss this in detail. Operations 1. and 8. of the algorithm are simply color
conversions, and can be approximated by look-up-tables (LUTs). Operation 2. is a pixel-
based power function that can also be stored as a LUT. Operation 3. just needs to compute
the cumulative histogram of the value component to obtain the set of parameters. Operations
4. and 5. are the definition and application of a non-linear transform. This step can be costly
if it is not properly programmed. For this reason we define γ as a LUT by evaluating the
equation of Operation 4. (i.e. Eq. 5 in the paper) at equal intervals in the range [0− 1], and
then Operation 5. is just the execution of the LUT. Operation 6. is a pixel-based modification
composed of simple arithmetic operations and a power function. Again, we can conveniently
approximate the power function with a LUT, as saturation values are always between 0 and
1. Finally, Operation 7. is very similar to the unsharp masking process carried out in many
camera models and can therefore be executed with low complexity. In particular, this last
operation computes: i) the local mean of the image as a convolution, that in Fourier Space
has a computational complexity of o(n logn)), and ii) a pixel-wise linear operation. Let us
also note that all the operations of our method can be easily parallelized.

4 Results

In this section we first perform an analysis of the main parameters of our method. Later
we compare our method versus the state-of-the-art both qualitatively and quantitatively with
non-reference and full-reference image metrics. Then, we present the psychophysical exper-
iment that we designed for the comparison of the algorithms. We compare our approach to
other artifact-aware methods, and finally we compare the computational time of the different
approaches.
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Fig. 4: Analysis of the parameters of the approach. The first column shows the original
image. In the rest of the figure, the parameter τ moves between 0.5 in the first row to 0.9
in the last row in equal increments. Column-wise we have the result of our method with
k = 0.3 in the first column, k = 0.5 in the second column, and k = 0.7 in the last column.

4.1 Analysis of the parameters

We start analyzing the effect of the parameters τ and k of our approach. Figure 4 shows
the original image in the first column. Then, in the other three columns, we show different
results of the method by modifying both k and τ . In particular, the value of k changes over
the different columns in an increasing manner (from 0.3 in the second column to 0.5, and
0.7). Conversely, the value of τ is increased row-wise, (from 0.5 for the first row, to 0.7,
and 0.9). Regarding the parameter k, we can observe that as its value increases, the local
contrast increases. Regarding the parameter τ , as its value decreases the image presents
more saturated colors, but when τ becomes too small the image loses realism due to the
over-saturation. In general, indoor scenes usually present saturated man-made colors, while
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Fig. 5: Analysis of the effect of parameter k. From left to right: Original hazy image, global
part of our method (steps 1 to 6), the output of our full method with k = 0.4, k = 0.6, and
k = 0.8.

outdoor scenes present natural colors. For this reason we will use τ = 0.8 for outdoor hazy
scenes and τ = 0.7 for indoor synthetic scenes in this paper.

Let us now focus more on the behaviors of the k parameter. In Figure 5 we compare the result
produced with different k values, from left to right: hazy image, the output of the global part
of our method (steps 1 to 6), the output of our full method with k = 0.4, k = 0.6, and
k = 0.8. We can see in the first two rows that in the case of real outdoor hazy images as
k increases more dehazing is achieved, but at the expense of a magnification of contrast,
leading to some noise enhancement. Therefore, for outdoor scenes where faraway regions
need to be restored a middle value of k of around 0.4 to 0.6 seems to be a good trade-
off between dehazing power and perceived noise. On the other hand, in indoor scenes the
objects are closer to the camera and therefore, there is no need for dehazing faraway regions.
In this case, the global part of our method already provides good results, while bigger values
of k excessively over-enhance the image.

4.2 Comparison versus state-of-the-art

Let us now qualitatively compare our results versus current state-of-the-art methods, namely
those of Choi et al. [11], Meng et al. [33], Tarel et al. [51], the Dark-Channel (DC) [21],
and Wang et al. [56].

We first consider some standard images in the dehazing literature. Results for these images
are presented in Figure 6. In this figure we show (from left to right) the original image, Choi
et al., Dark-channel, Meng et al., Tarel et al., Wang et al., and our results with k = 0.4, and
k = 0.6. Our method is competitive with the rest of image dehazing methods for this set of
standard haze images. In particular, let us remark the excessive saturation of the methods of
Choi et al. in the second, fourth, and fifth image, the greysh cast in the method of Tarel et al.,
and the excessive contrast in the fourth image for the method of Wang et al.. In particular,
our method can compete in each of the scenes to the best result.
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Original Choi He Meng Tarel Wang Ours Ours
et al. [11] et al. [21] et al. [33] et al. [51] et al. [56] (k = 0.4) (k = 0.6)

Fig. 6: Results when dehazing standard images.

The main advantage of our method is more apparent when challenging images are tested,
like the ones in Figure 7. The order of presentation is the same as in the previous figure. In
the images presented here, the artifacts that appear in the results of state-of-the-art methods
are explicit. These artifacts are so prominent that the original image tends to be preferred
over the dehazed result (focus for example on the fourth image for the case of Choi et al., the
third image for the case of Dark-Channel, the second image for Meng et al., the fifth or sixth
image for Tarel et al., and the fifth, seventh, and eighth for Wang et al.). This last method
over-saturates the green of the trees in the fifth image and it creates a very strange effect in
the water in the last one, that looks completely unrealistic. In contrast, the results presented
by our approach are dehazed without producing any artifact. Let us note that the work of
Meng et al. performs both image dehazing and white balancing, due to their computation
of the image locality, while the other methods suppose the haze color to have been already
white-balanced.

Non-reference quantitative evaluation To quantitatively compare our results versus the state-
of-the-art methods we use the FADE perceptual blind image quality metric [11], the e-score
and the r-score metrics proposed by Hautière et al. in [20], and the BRISQUE [35] and
NIQE [34] measures as proposed in Wang and Yuan [57]. FADE is pre-trained to look for
measurable deviations between natural foggy and fog-free images and then uses these devi-
ations to estimate the visibility of a foggy scene from a single image. The e-score and the
r-score compute ratios at visible edges to analyze the improvement in their visibility. Fi-
nally, BRISQUE and NIQE are image quality metrics. FADE, NIQE and BRISQUE metrics
do not use any other image apart from the one to be evaluated, while e-score and r-score
need to be compared to the original hazy image, but not to a ground-truth. We run the met-
rics on a set of 600 foggy images presented in [11]. Results are shown in Table 1. We can see
that for the FADE metric our method improves, as we increase the value k. Our method with
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Original Choi He Meng Tarel Wang Ours Ours
et al. [11] et al. [21] et al. [33] et al. [51] et al. [56] (k = 0.4) (k = 0.6)

Fig. 7: Results when dehazing challenging images.

k = 0.4 is already competitive with state-of-the-art methods, and with k = 0.6 is second to
Choi et al. according to the metric (let us remark here that Choi et al. method is designed
to minimize this metric). Regarding the e-score the best methods are the ones of Tarel et
al. and Meng et al.. On the r-score the best method is the one of Wang et al. followed by
our method with k = 0.6. Our method with k = 0.6 ranks the best for the NIQE metric,
followed by the one of Meng et al., and for the BRISQUE dataset the best methods are the
Dark-channel, the method from Tarel et al., and our global method. Finally, let us note that
all the images from Figures 6 and 7 are from the dataset used in this evaluation.

Full-reference quantitative evaluation We consider the Middlebury subset from the D-HAZY
dataset [3] in order to compute a full-reference image metric on our results. In this dataset,
for each scene we have a pair of fog/no-fog registered images that allows us to compute full-
reference metrics between the result of the method applied to the fog image and the original
no-fog image. We compute the results for the ∆E and the SSIM metrics as suggested
in [3] for all the methods used before, and we also add the results for the CLAHE [43],
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Table 1: Non-reference quantitative results for the different methods on the 600 foggy im-
ages of the FADE dataset using different metrics. Best result is marked in green, second-best
in blue, and third-best in orange; med. stands for median, trim. stands for trimean.

FADE e-score r-score NIQE BRISQUE
med. trim. med. trim. med. trim. med. trim. med. trim.

Choi et al. 0.42 0.44 0.34 0.40 1.45 1.44 4.04 4.04 18.75 19.01
Meng et al. 0.49 0.50 0.63 0.72 1.79 1.85 3.65 3.68 21.75 22.26
Tarel et al. 0.48 0.54 0.79 0.63 1.88 1.82 4.29 4.30 27.20 28.03
Dark-channel 0.83 0.85 0.16 0.21 1.04 1.07 3.90 3.90 15.25 15.44
Wang et al. 0.47 0.49 0.53 0.63 2.95 2.96 3.85 3.84 24.99 25.99
Ours-only global 0.90 0.94 0.14 0.17 1.14 1.14 3.72 3.76 21.29 21.75
Ours-k = 0.4 0.64 0.67 0.29 0.35 1.62 1.63 3.76 3.74 22.84 23.06
Ours-k = 0.6 0.45 0.47 0.38 0.46 2.19 2.20 3.53 3.54 23.51 24.24

Ground Input Choi He Meng Tarel Wang Ours Ours
truth image et al. [11] et al. [21] et al. [33] et al. [51] et al. [56] Global (k = 0.4)

Fig. 8: Results for images in the Middleburry part of the D-Hazy dataset.

Ancuti and Ancuti [1], and Fattal [15] methods given in [3]. Also, we compute the CID
metric [29] for those methods compared in the non-reference case. CID is a color extension
of the SSIM metric that looks for the changes, from one image to the other, in features such
as hue, lightness, chroma, contrast, and structure.

Results are shown in Table 2. We can see that Dark Channel provides the best results in
this case. Our global method ranks five times as second and one time as third, while our
method with k = 0.4 ranks three times as third. Let us note here that the foggy images
in this dataset are created from well-exposed indoor no-foggy images, and therefore, the
dark-channel hypothesis is mostly-accomplished by design in all the cases.

In Figure 8 we compare the results of the different methods for three of the images in the
dataset. From left to right: the ground-truth image, the hazy input image, Choi et al., Dark-
channel, Meng et al., Tarel et al., Wang et al., our global result, and our result with k = 0.4.
We can clearly see that Choi et al. makes the image too dark, Meng et al. gives a bluish cast
for the first and over-saturates the color for the second image, while Wang et al., and Tarel
et al. wash-out the colors of the image. The method of Wang et al. also over-increases the
contrast creating unrealistic results. The dark-channel method is the closer to the ground-
truth for the three images, although it introduces some artifacts in the last one. Our method
does not introduce artifacts, although it still misses some extra saturation.
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CID Delta E SSIM
median trimean median trimean median trimean

Original 0.61 0.59 22.86 24.09 0.77 0.78
Tarel et al. 0.45 0.43 15.86 16.18 0.83 0.82
Choi et al. 0.58 0.57 19.76 20.54 0.74 0.74
Meng et al. 0.43 0.43 14.12 14.07 0.85 0.84
Dark Channel 0.33 0.33 10.05 10.72 0.88 0.88
CLAHE - - 14.78 14.91 0.68 0.67
Ancuti and Ancuti - - 13.26 13.69 0.84 0.84
Fattal - - 16.06 16.34 0.80 0.81
Wang et al. 0.54 0.52 15.93 16.44 0.82 0.81
Ours-only global 0.38 0.41 12.57 13.90 0.85 0.85
Ours-k = 0.4 0.42 0.42 12.69 13.97 0.83 0.83

Table 2: Full-reference quantitative results for the different methods on the Middleburry set
of the D-Hazy dataset. Best result is marked in green, second-best in blue, and third-best in
orange

4.3 Psychophysical evaluation

We have also performed a psychophysical experiment and details are given below.

4.3.1 Subjects

Fifteen subjects completed the experiment. Two are authors of the paper. All observers were
tested for normal color vision using the Ishihara color blindness test. Ethics was approved
by the Comité Etico de Investigacion Clinica, Parc de Salut MAR, Barcelona, Spain and all
procedures complied with the declaration of Helsinki.

4.3.2 Apparatus

Experiment was conducted on an AOC I2781FH LCD monitor set to ‘sRGB’ mode with a
luminance range from 0.1cdm−2 to 175cdm−2, with spatial and temporal resolutions of
1920 by 1080 pixels and 60 Hz. The display was viewed at a distance of approximately 70
cm so that 40 pixels subtended 1 degree of visual angle. The full display subtended 49 by
27.5 degrees. The decoding nonlinearity of the monitor was recorded using a Konica Minolta
LS 100 photometer and was found to be closely approximated by a gamma function with
an exponent of 2.2. Stimuli were generated under Ubuntu 15.04 LTS running MATLAB
(MathWorks) with functions from the Psychtoolbox [6, 42]. The experiment was conducted
in a dark room.

4.3.3 Stimuli

30 randomly selected images were taken from the FADE dataset [11]. Dehazed versions of
the original images were produced according to the proposed approach with k = 0.4 and
the approaches of Choi et al. [11], Meng et al. [33], Tarel et al. [51], the Dark-Channel
(DC) [21], and Wang et al. [56].



16 Javier Vazquez-Corral et al.

Ours Tarel et al. Meng et al. Dark Channel Choi et al. Wang et al.
0.32 -0.29 -0.31 0.21 0.11 -0.05

Table 3: Results for the psychophysical experiment using the Thurstone Case V analysis.
The larger the value, the better the method.

4.3.4 Procedure

The dehazed images were viewed on either sides of the original hazy image. Subjects were
asked to select the image that they prefered out of the three displayed images. Given the 30
hazy images and 6 dehazed versions for each image, the total number of comparisons was
450. So, the experiment was conducted in 2 sessions and the subjects had unlimited time to
make the choice. On average, it took around 25 minutes for each session.

4.3.5 Analysis of the results

The first analysis of our results shows that in 52% of the cases observers preferred the
original image, instead of any of the two image processing solutions. This shows that there
is still a long way to go regarding the development of new image dehazing methods capable
of producing results pleasant to human observers. This result is in agreement with the work
of Ma et al. [31], where the Mean Opinion Scores obtained by the original hazy images were
similar to those obtained by different dehazing algorithms.

We have also analyzed the result of our experiment in terms of the Thurstone Case V Law
of Comparative Judgment. To this end, we have converted our data into a pure pairwise
comparison setting. We have done so by assigning 1 to an image processing method in case
it was selected among the three images, and giving 0.5 for each method in the case the
original hazy image was selected. The results for this setting are shown in Table 3, where
we can see that our method is the one selected more often, followed by the Dark Channel,
and the method by Choi et al.

The results presented in this subsection when compared with the results obtained from the
quantitative metrics (Tables 1 and 2) indicate the importance of working towards defining
better metrics for the image dehazing problem that are able to predict the users’ preference.

4.4 Comparison versus other artifact-aware methods

Figure 9 presents a comparison of our results versus the artifact-aware methods of Chen et
al. [10] and Li et al. [26]. From left to right we have the original image, the result of Li et al.,
the result of Chen et al. and our result with k = 0.4. In these images we can clearly see that
the method of Li et al. still presents color artifacts. These color artifacts come from the fact
that this method aims to reduce blocking artifacts coming from compression, but it is still
based on undoing Kochsmieder’ law, and it therefore inherits the problems related to Eq.(4).
On the other hand, the method of Chen et al. does not produce color artifacts. However,
the results look cartoonish due to its dependence on a minimization based on total variation
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Fig. 9: Comparison versus other artifact-free methods. From left to right: Original, Li et
al. [26], Chen et al. [10], and our method with k = 0.4

which makes it prone to stair-casing artifacts. This is clearly visible on the building of the
first image, the letters of the second image, or the tree in the third one.

4.5 Computational time

We compare in Table 4 the computational time of our non-optimized, non-parallelized im-
plementation versus that of Wang et al. (using the authors’ implementation) on Matlab
R2015b in an Intel Core i7-3770 @ 3.40Ghz with 16Gb of RAM, and to other already
published computational times for state-of-the-art methods run under a very similar com-
puter configuration (16Gb and 3.50Ghz) for an image of size 720× 580 [27]. In this table,
we can see that our method is twice as fast as any of the other state-of-the-art methods.

We have also optimized and parallelized our algorithm using the CUDA platform. In this
implementation the color conversions are approximated via look-up tables (LUT). The run-
ning time of our algorithm in a Nvidia Titan XP for a FullHD image (i.e. an image of size
1920 × 1080) is 90 milliseconds, which represents a time two orders of magnitude shorter
than that of current state-of-the-art methods.
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Method Time (seconds)
Ancuti and Ancuti [1] 3.0

Tan [47] 3.3
Fattal [14] 141.1

He et al. [21] 20
Tarel et al. [51] 12.8

Kratz and Nishino [39] 124.2
Meng et al. [33] 1.0

Fattal [15] 1.9
Berman et al. [5] 1.8
Tang et al. [49] 10.4

Cai et al. [8] 1.7
Wang et al. [56] 43.4

Ours-k = 0.4 (only global) 0.45 (0.40)
Ours-k = 0.4 on GPU and FullHD 0.09

Table 4: Comparison of run-time among the different methods in an image 720 x 580. Best
time is marked in green, second-best in blue, and third-best in orange. The last row presents
the result of our GPU implementation in a FullHD 1920× 1080 image.

Finally, let us note that for a color image of size 4000×3000, which is not tractable by many
current methods due to its extremely large size, our non-optimized, non-parallelized Matlab
version on the computer stated above has an approximate running time of 4.3 seconds. The
same image, using our GPU implementation, has a running time of 300 milliseconds.

5 Summary and further work

In this work we have presented an image dehazing method whose main characteristics are
to be artifact-free, based on human perception principles, independent from any physical
constraint, and fast. To this end, we have worked in the HSV color space. Our proposed
method first reduces the Value component with a global function that performs a constrained
histogram flattening. Next, it replaces the Saturation component by keeping the colorfulness
of the original image. Finally, local enhancement is applied to the Value component. Results
show that our method competes with the state-of-the-art for standard images, and that it
outperforms current methods when dealing with challenging images.

As further work, we would like to define a metric that is able to predict the preference of
the users in our experiment, and to later look for the parameters of our approach that better
minimize the newly defined metric.
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Appendix: sRGB/HSV color conversions

From sRGB to HSV

Given a pixel (R,G,B) in sRGB space, we start by defining M = max(R,G,B) and
m = min(R,G,B). Let us also define an auxiliary variable H ′ in the following way

H ′ =


0 if M − n = 0.
G−B
M−m mod 6 if M = R.
B−R
M−m + 2 if M = G.
R−G
M−m + 4 if M = B.

(9)

Then, the HSV coordinates are defined as

H = H ′ × 360. (10)

S =
M −m
M

. (11)

V =M. (12)
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From HSV to sRGB

Given a pixel (H,S, V ) in the HSV space we start by defining C = S × V , H ′ = H
60 ,

X = C × (1− ‖H ′ mod 2− 1‖), and m = V − C. Then the pixel value in sRGB color
space is defined as

(R,G,B) =



(m,m,m) if C = 0.

(C +m,X +m,m) if 0 ≤ H ′ ≤ 1.

(X +m,C +m,m) if 1 ≤ H ′ ≤ 2.

(m,C +m,X +m) if 2 ≤ H ′ ≤ 3.

(m,X +m,C +m) if 3 ≤ H ′ ≤ 4.

(X +m,m,C +m) if 4 ≤ H ′ ≤ 5.

(C +m,m,X +m) if 5 ≤ H ′ ≤ 6.

(13)


