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Palette-based Color Harmonization
via Color Naming

Danna Xue, Javier Vazquez-Corral, Luis Herranz, Yanning Zhang, Michael S. Brown

Abstract—Color harmony refers to combinations of colors
that look pleasing together. We present a novel strategy to
harmonize an image’s colors using color-palette manipulation
and color naming. Palette-based color manipulation is a method
that extracts a few colors to represent the image. Modifying
the palette colors modifies the color appearance of the image.
A color-naming model is a mechanism to categorize colors
into a fixed number of basic color terms. Working from a
color-naming model, we derive a set of prototype colors and
demonstrate that mapping an image’s extracted color palette to
the nearest prototype colors effectively harmonizes the image’s
colors. This straightforward approach yields visually compelling,
outperforming more complex color harmony methods.

Index Terms—Color modification, color harmonization, color
naming, color palette, image recoloring

I. INTRODUCTION AND RELATED WORK

Color modification is a crucial cornerstone in graphic de-
sign, where color coherence [1] and harmony [2] play a vital
role in various applications like advertisements and brochures.

However, most methods for color manipulation focus on
applying color themes to meet specific design requirements,
while often overlooking the preservation of the image’s natural
and harmonious color composition. In this work, we take
a different approach by revisiting two widely used color
modification methods: palette-based image recoloring and
color naming. Specifically, we demonstrate how enhancing
an extracted color palette considering a color-naming model
leads to more harmonious image colors. This improvement is
evident compared to a method explicitly designed for color
harmonization.

Palette-based color manipulation allows for intuitive adjust-
ments of different colors, empowering designers to establish
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Fig. 1. Comparison between the results of color harmonization (Cohen-Or et
al. [2]) and our approach. For each image, the optimal harmonious template
(i.e. gray areas) on the hue wheel is shown. The collection of colors inside the
gray areas is considered to be harmonious. Lower F-score and higher MITS
and PIT indicate more harmonious colors. Our proposed method produces
harmonized and realistic colors without few artifacts.

specific color schemes for achieving color harmony and en-
hancing visual appeal [1]. The process begins with palette
extraction, where a set of representative colors, known as a
color palette [3], is identified from an image. This palette can
be manually selected [4], [5] or automatically generated using
algorithms like k-means clustering [6], [7] or convex hulls
[8], [9]. Once the color palette is obtained, it serves as a
reference for modifying the colors in the image. Modifications
may include color correction, recoloring [1], [6], [7], [10], or
creating color harmonies [11].

Different from image enhancement approaches that aim to
enhance colors [12]–[14], color harmonization is a technique
intended to create balance and coherence among different
colors within an image. Color harmonization typically follows
specific color schemes to produce visually pleasing compo-
sitions. Cohen-Or et al. [2] have defined harmonious colors
as those that adhere to a pre-defined hue distribution repre-
sented by harmonious templates. By mapping the colors in
an image to this distribution using defined rules, the resulting
image aligns with aesthetic design principles. Following this
idea, methods have targeted improving the harmonic tem-
plate search via predominant hue colors [15]–[18] or color
histograms [19]. Color harmonization is a common practice
used to enhance visual aesthetics, particularly in fields such
as graphic design.
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Color naming is the practice of associating names or labels
with specific colors. The seminal work by [20] established that
basic color terms that are universally recognized: red, orange,
brown, yellow, blue, pink, purple, green, black, gray, white.
Different models [21]–[24] explored how to parameterize RGB
values into probabilities, which indicate the likelihood that
the RGB values belong to each of these color names. Color
naming categories are related to the human naming of specific
objects, helping to ensure the relationship between content and
colors by constraining color names.

It is important to note that both saturation and color dis-
tribution play crucial roles in achieving color harmony [2].
For this reason, we introduce the concept of color-name
stability as a reference in image color adjustment. The goal
is to enhance the image while maintaining its original color
names. Our palette-based method achieves this by modifying
color distribution to obtain a representative palette with the
same color names while enhancing image saturation. This
approach, unlike directly increasing overall image saturation,
does not compromise color harmony. We demonstrate how
the color-name stability hypothesis within an extracted palette
results in an output image with harmonized image colors
(see Fig. 1). Our experimental results demonstrate that our
method can improve image color harmonization aesthetically
and statistically.

II. METHODOLOGY

Our approach involves four key steps: color prototype gener-
ation with color naming (II-A), color palette extraction (II-B),
color matching (II-C), and palette-based image recoloring
(II-D). Color prototype generation with color naming and color
matching are the most crucial, as they involve deriving the
new set of colors that will form the “basis” of the image.
Our method mainly focuses on these steps by identifying a
suitable target palette, ensuring that the recolored image based
on this palette exhibits increased saturation while minimizing
hue shifts. Fig. 2 shows an overview of our approach.

A. Color Prototypes Generation with Color Naming

The objective of this step is to generate the set of candidate
colors to be the prototype palettes. Our method is based on
keeping the names of the colors in the palette, and therefore,
we enforce that the names of the colors in the source palette
are unchanged in the final target palette. To identify the color
name, we apply a color-naming model [23], which assigns
11 color probabilities to any input value in the sRGB color
space. These probabilities represent the extent to which the
RGB values can be named with a specific term. We first run the
color-naming model for the possible values in the whole sRGB
color space, where R,G,B ∈ [0, 255], with a 8×8×8 grid. In
this way, the color space is divided into 11 different parts, one
per color term. Then, k-means clustering is applied to these
color values at each part, resulting in n distinct partitions per
color name. Due to the varying sizes of the regions covered by
different color terms, we select the number of candidate colors
for each color term based on the area they cover. Specifically,
we select a basic 10 colors for each term. Besides, among
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Fig. 2. The proposed palette-based color harmonization framework. All colors
in the color space are categorized into 11 classes by a color-naming model,
and colors with the same color name are clustered. The color with the highest
saturation in each cluster is selected as a color in the prototype palettes. Given
an input image, the source palette of the image is extracted. Then, the color
name of each color in the source palette is identified by the same color-naming
model. By searching for the color with the smallest difference from the source
color in the prototype palette with the same color name, the target color is
obtained. Finally, the image is recolored based on the target palette to achieve
color modification.

all the 11 color names, ‘green’, ‘blue’, and ‘purple’ have the
highest counts, so we add an extra 5 colors for each of these
3 color names. Additionally, to ensure consistency in human
skin tones in portraits, we also add 5 more colors for ‘red’
and ‘pink’.

Up to this point, we have ensured that the colors in each
prototype palette are of homogeneous color terms. Next,
to guarantee a large saturation value from each constructed
partition, we select the color with the highest saturation in
the cluster as the candidate color for the prototype. Therefore,
we end up with a prototype of candidate colors per color term
P p = {cp1, c

p
2, ..., c

p
n}, which have both stable color names and

high saturation.

B. Color Palette Extraction

For an input image, we extract a color palette P s =
{cs1, cs2, ..., csl } that represents the primary colors of the image.
To reduce computational complexity, we first compute the
color histogram of the image and extract the color palette
P s by k-means clustering based on this histogram, where
the cluster centers are selected as the colors in the palette.
The color histogram is computed on ab channels in the Lab
color space to avoid the influence of regions with excessively
low or high lightness on the clustering results. In most cases,
the number of the cluster center l is typically set to a fixed
value, with l = 5 being the most common choice in graphic
design. However, since the richness of colors varies among
different images, the optimal number of colors may vary for
each image. To avoid an excessive number of similar colors
in the palette, we determine the optimal number of clustering
centers based on the percentage of explained variance [1]. For
each value of l, ranging from 2 to 7, we calculate the within-
group distortion. This involves the summation of the distance
dl of each point in the cluster to its center. The total distortion
d1 is the summation of distances between each color point and
the overall mean color. We select the optimal value of l when
d1−dl

d1−d7
> γ, with γ = 0.93.
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TABLE I
COMPARISON OF IMAGE QUALITY AND HARMONY SCORE ON THE CAMERA RAW VERSION OF FIVEK [25], KODAK [26] AND PPR10K [27] DATASETS.

■, ■ INDICATE SMALLER AND LARGER VALUES ARE BETTER, RESPECTIVELY.) ■, ■ INDICATE THE BEST AND SECOND BEST RESULTS.

Data FiveK (Camera Raw) PPR10K Kodak
Metrics NIQE BRISQUE F-score MITS PIT(%) NIQE BRISQUE F-score MITS PIT(%) NIQE BRISQUE F-score MITS PIT(%)

SRIE [28] 3.32 41.09 1477 0.368 90.97 4.00 43.59 412 0.372 93.13 2.90 49.36 1104 0.320 91.86
CURL [29] 3.46 41.85 2841 0.44 87.93 4.24 46.32 928 0.419 90.30 3.06 51.58 1909 0.442 89.00

DeepUPE [30] 3.40 40.88 1502 0.399 91.38 4.09 45.23 318 0.408 94.55 3.08 51.93 895 0.371 92.52
CLIP-LIT [31] 3.36 44.18 1489 0.366 91.03 3.72 46.14 414 0.370 93.03 3.24 55.23 1100 0.319 91.77
3DLUT [32] 3.48 41.98 2406 0.453 88.9 4.29 46.53 688 0.432 91.08 3.06 50.00 1674 0.465 88.70
AdaInt [33] 3.44 42.5 2379 0.455 89.21 4.20 45.60 671 0.446 90.48 3.07 49.87 1709 0.463 88.47

C-Harmony [2] 3.52 38.17 58 0.368 98.39 4.07 42.23 14 0.375 98.20 3.06 48.95 8 0.316 98.44
Ours 3.56 39.51 312 0.558 98.59 4.26 44.46 104 0.509 98.50 3.05 48.72 80 0.473 99.28

C. Color Matching

This stage defines the target palette by selecting the best
representative among the candidate colors for each color in the
source color palette. To this end, given the RGB values of the
source palette color, we run the color naming model and select
possible colors for the target palette those in the prototype that
share the same color name. Then, among all these colors, we
choose the one that has the smallest difference to the source
color as the target one. Here, we compute the RGB Euclidean
distance for color distance measurement. Note that as there
might be some source colors having similar probabilities of
belonging to multiple color names, a relaxed search space is
applied for the target color search. More in detail, instead of
only getting the prototype colors for a single color term, we
select the prototype colors for any color term that 1) has a
probability greater than 15%, and 2) is among the top three
color names in terms of probability.

D. Palette-based Image Recoloring

Finally, we recolor the input image with the target palette.
With the matched source and the target colors, color map-
ping is executed by inverse distance weighting, where larger
weights are assigned to closer colors [1]. More specifically,
given the pixel value of the input image Is, source palette
P s = {cs1, cs2, ..., csl } and the corresponding target palette
P t = {ct1, ct2, ..., ctl}, the pixel in the recolored image It

with coordinate (x, y) is determined by It(x, y) = Is(x, y) +∑l
i=1 wi(c

s
i − cti), where the weight factor wi(x, y) is wi =

1∑l
i=1 |Is(x,y)−csi |2+ε

, ε = 10−4. The recolored image has
higher saturation and a more distinct color for color naming.

III. EXPERIMENTS

A. Experimental Setup

Datasets. The MIT-Adobe FiveK dataset [34] contains
5,000 raw images taken with DSLR cameras, covering a
broad range of scenes, subjects, and lighting conditions. We
conduct experiments on the Camera Raw version of FiveK.
The given DNG images are converted to 8-bit sRGB images
with Adobe Photoshop using the Camera Raw software. For
a fair comparison with deep learning-based approaches, we
present the results of the test set, which is the last 500 images.
The Kodak dataset [26] contains 24 8-bit sRGB images.
The test images of FiveK and Kodak are resized with the

shorter side set to 512 pixels. The Portrait Photo Retouching
(PPR10K) dataset [27] contains 11,161 portrait photos. We use
the validation split of the source 360p 16bit sRGB images and
convert them to 8 bits required by the color naming model.

Competing methods. We compare our results versus re-
cent deep-learning approaches, CURL [29], DeepUPE [30],
3DLUT [32], and AdaInt [33] that aim to minimize the
difference from an expert photographer; an unsupervised deep-
learning-based image enhancement approach, CLIP-LIT [31];
a traditional image enhancement method, SRIE [28]; and the
color harmonization approach, C-Harmony [2].

Image quality metrics. Our image modification paradigm
does not have any real ground-truth, since our goal is not
to approximate the user intent, e.g. ExpertC in FiveK. We
quantitatively evaluate the method by two non-reference image
quality assessment metrics: NIQE [35] and BRISQUE [36].
These two metrics assess the perceptual naturalness of images.

Color harmony metrics. We evaluate color harmonious
degree with three metrics: F-score [2], Mean Inside-Template
Saturation (MITS), and Percentage of Inside-Template pixels
(PIT). These metrics measure the color harmony of an image
I by comparing hue distribution H and saturation S with
respect to a certain harmonious scheme (m,α), where Tm

is the template and α is the associated orientation. x ∈ Iin
and x ∈ Iout indicate the pixels inside and outside the
scheme, respectively. F-score is calculated as F (I, (m,α)) =∑

x∈Iout

∥∥H(x)− ETm(α)(x)
∥∥ · S(x), where ETm(α)(x) in-

dicates the template border hue of Tm(α) that is closest
to the hue of the pixel of the image.

∥∥H(x)− ETm(α)(x)
∥∥

denotes the hue distance from a pixel to the nearest boundary
of the harmonic scheme Tm(α), measured in radians, on
the hue wheel. A smaller F-score indicates that there are
fewer pixels with hues outside the template and that those
out-of-template pixels have lower saturation. With the same
optimal harmonious scheme found by F-score, we compute
PIT that quantifies the proportion of pixels within the template:
PIT (I) = N(x∈Iin)

N(x∈I) , where N() denotes the number of
pixels that meet the specified criteria. MITS calculates the
average saturation of pixels within the template: MITS(I) =∑

x∈Iin
S(x)

N(x∈Iin)
. Larger PIT and MITS suggest more pixels with

higher saturation values inside the optimal template, respec-
tively, therefore complementing the F-score metric.
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Fig. 3. Comparison of images against other methods on FiveK. Our method produces more saturated colors while preventing unnatural color shifts.

B. Quantitative Results

Table I looks at the results for three different datasets. It
shows that for traditional blind quality assessment metrics
(NIQE, BRISQUE), both our method and C-Harmony are
competitive against traditional state-of-the-art enhancement
models. It is important to remember that our goal is to not
only obtain an image that is enhanced but also better in
terms of its color scheme. Our method is the best for both
MITS and PIT and second for F-score in these datasets, which
indicates that our results exhibit a distribution that aligns
more closely with the harmonic template and possesses higher
saturation. Also, we should remark that C-Harmony [2] is
optimized to minimize the F-score, the only one of the three
harmonization metrics where it outperforms us. Also, since
the image enhancement methods (SRIE, CURL, DeepUPE,
CLIP-LIT, 3DLUT, and AdaInt) do not target to optimize color
harmony, their performance on PIT is somehow lacking (90%),
while our method and C-Harmony are over 98%.

C. Qualitative Results

Compared to other methods, our approach does not produce
over-illuminated images as CLIP-LIT [31] (in Fig. II-D),
and artifacts in regions with high brightness, which happens
in CURL and C-Harmony (see Fig. II-D and Fig. II-D).
Additionally, in most cases, our approach increases image
saturation while minimizing significant hue shifts, avoiding
the unnatural color changes that sometimes occur in color
harmonization methods (in Fig. II-D).

D. Ablation study

In this subsection, we focus on the ablation study on the
Camera Raw version of FiveK.

Number of prototype colors. The prototype palette
determines the richness of colors in the recolored image.
We, therefore, compare the differences in image quality and
color harmonious score when varying the number of prototype
colors, from 5 to 50 for each color name. Table II shows that as
the number of prototype colors decreases, the color harmony-
related metrics of the images improve. This is because, with a
limited color palette, the color range of the recolored images

TABLE II
ABLATION OF THE NUMBER OF PROTOTYPE COLORS ON FIVEK.

Number Names NIQE BRISQUE F-score MITS PIT(%)
5 top1 3.573 39.374 987 0.643 97.01
10 top1 3.564 39.668 890 0.608 96.95
15 top1 3.559 38.842 1278 0.549 93.11
20 top1 3.545 38.905 1699 0.530 91.87
50 top1 3.531 38.654 1679 0.458 92.15

10+5 top1 3.568 39.608 427 0.602 98.11
10+5 top2 3.559 39.508 318 0.563 98.56
10+5 top3 3.556 39.510 312 0.558 98.59

TABLE III
ABLATION OF COLOR SIMILARITY MEASURES ON FIVEK.

Similarity NIQE BRISQUE F-score MITS PIT(%)
Angular 3.541 38.83 980 0.502 95.14

Probability 3.538 38.90 893 0.510 95.25
Euclidean 3.556 39.51 312 0.558 98.59

is constrained, making it easier to map different source colors
to the same target color. With 10 prototype colors for each
color name and 5 additional colors for the color name with the
largest number of colors, most of the harmony metrics showed
improvement. Moreover, these extra colors help reduce hue
shifts to some extent, particularly in the case of skin tones.

Color similarity measures. We also compared different
color similarity measurement methods, including Euclidean
distance, angular distance [37], and color-naming probability
similarity [23] for color matching. The first two directly
measure color distance in the color space, while the latter
assesses similarity in color-naming space by calculating cross-
entropy between color probability distributions for different
color names. Table III shows that the Euclidean distance-based
method outperforms others in metrics related to color harmony.

IV. CONCLUSION

This paper introduces a method for color harmonization
based on color palettes and color naming. Our method is par-
ticularly well-suited for image modification in graphic design,
where adhering to a color scheme is important. Experiments
across multiple datasets help demonstrate the robustness and
generalization ability of our method across diverse inputs.
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