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Abstract—Emerging display technologies are able to produce
images with a much wider color gamut than those of conventional
distribution gamuts for cinema and TV, creating an opportunity
for the development of gamut extension algorithms (GEAs) that
exploit the full color potential of these new systems. In this
paper we present a novel GEA, implemented as a PDE-based
optimization procedure related to visual perception models, that
performs gamut extension by taking into account the analysis
of distortions in hue, chroma and saturation. User studies
performed using a digital cinema projector under cinematic (low
ambient light, large screen) conditions show that the proposed
algorithm outperforms the state of the art, producing gamut
extended images that are perceptually more faithful to the wide-
gamut ground truth, as well as free of color artifacts and
hue shifts. We also show how currently available image quality
metrics, when applied to the gamut extension problem, provide
results that do not correlate with users’ choices.

Index Terms—Gamut mapping (GM), gamut mapping algo-
rithm (GMA), gamut extension (GE), gamut extension algorithm
(GEA), color contrast, color reproduction, variational methods.

I. INTRODUCTION

THE normal human eye contains three types of cone cells
that respond to incident light to produce the sensation of

color. Two lights that produce the same cone response triplet are
perceived as having the same color, even if they have a different
power spectrum. This allows to generate any perceivable color
by a proper mixture of any three given lights (as long as they
are colorimetrically independent, i.e. that the mixing of two
of them does not produce the same color as the remaining
one), in what is known as the trichromacy property. Therefore,
given three light ‘primaries’, any color is characterized by the
triplet of weights with which it can be generated as a mixture
of the primaries. So colors can be represented as points in a
three-dimensional space, although it is common to ignore light
intensity and just represent the chromatic content of light as
two-dimensional points on a plane: Fig. 1 shows the standard
CIE xy chromaticity diagram, where the horseshoe-shaped
region corresponds to the chromaticities of all the colors a
standard observer can perceive. While the trichromacy property
states that any color can be expressed as a linear combination of
a given set of primaries, it is important to note that the weights
for the linear combination can be negative. Since most display
systems are based on mixing three primary lights by regulating
the power contribution of each, the color set that a display can
generate (its color gamut) is limited to the colors that can be
obtained with linear combinations that use positive weights,

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

Authors are with the Department of Information and Communication
Technologies, Universitat Pompeu Fabra, 08018, Barcelona, Spain. e-mail:
{waqas.zamir, javier.vazquez, marcelo.bertalmio}@upf.edu

because negative weights imply a physically-unrealizable light
of negative power. Given that each primary can be represented
as a point in the CIE xy diagram, the color gamut of a display
is therefore the triangle that has the primaries as its vertices,
i.e. the region covered by linear combinations with positive
weights, and as a consequence tri-chromatic displays are unable
to reproduce many colors that we can perceive.

M. R. Pointer in [34] analyzed 4089 samples of frequently
occurring real surface colors and derived what is commonly
known as “Pointer’s gamut”, shown in Fig. 1. This figure
also shows the standard gamuts DCI-P3 [3], used for digital
cinema projection and based on the gamut of Xenon lamps, and
BT.709 [11], with primaries close to the phosphor primaries
of CRTs and used for cable and broadcast TV, DVD, Blu-Ray
and streaming. Although both DCI-P3 and BT.709 cover a
reasonable amount of Pointer’s gamut, many interesting real
world colors fall outside these standard gamuts. To enhance the
overall viewing experience both for cinema and TV, the media
industry is continuously striving to improve image quality with
higher frame rates, larger resolution, vivid colors, and greater
contrast. Currently the emphasis is on high dynamic range
(HDR) and wide color gamut (WCG) imaging. As pointed
out in [15], HDR and WCG are independent image attributes
(a picture may have a high dynamic range but a reduced
color gamut such as BT.709, or the other way round) and
current commercial systems do not yet support them, pending
standardization of coding formats able to deal both with HDR
and WCG and for which there have been a number of proposals,
e.g. [15], [16], [35].

In 2012, the International Telecommunication Union-
Radiocommunication (ITU-R) recommended a new standard
gamut BT.2020 [10] for the next generation ultra-high definition
TV that encompasses DCI-P3 and BT.709 and covers 99.9%
of Pointer’s gamut. New laser projectors have monochromatic
primaries with high color purity [1] and therefore they are able
to cover the very wide BT.2020 gamut [23], [38], reproducing
nearly every color found in nature and providing the audience
with a more compelling color experience. But if the inputs are
movies with DCI-P3 gamut, as virtually all professional movies
currently are, the full color rendering potential of these new
projectors can not be realized. The same issue happens presently
when DCI-P3 projectors are used to display pictures that come
in BT.709 (usually because the movie distributor wants to
prevent issues with lower quality or older projectors). In both
cases there is a pressing need to develop gamut extension (GE)
techniques that automatically extend the gamut of the movie
content, with the very challenging constraint that this has to
be done in a way that the appearance of the gamut extended
result preserves as much as possible the artistic intent of the
content’s creator.

In the cinema industry, colorists at the post-production
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Fig. 1: Gamuts on CIE xy chromaticity diagram.

stage perform gamut modifications using three-dimensional
look up tables (LUTs). These LUTs contain millions of
entries and colorists only specify a few colors manually,
while the rest are interpolated without taking care of their
spatial or temporal context [8]. Subsequently, the resulting
video may have false colors that were not present in the
original material and intensive manual correction is usually
necessary, commonly performed in a shot-by-shot, object-
by-object basis. Nonetheless, these time consuming manual
procedures by skilled technicians are preferred over automatic
gamut mapping algorithms, because colorists always work
following and respecting the vision of the movie creator
[40], while automatic methods are prone to issues for which
audiences are very sensitive and that therefore severely affect
the quality of the results, like introducing color artifacts, hue
shifts, and not preserving the integrity of memory colors (e.g.
the blue of the sky, the green of grass) or skin tones [30].

The main contribution of this paper is to propose a gamut
extension algorithm (GEA), based on perception models, that
outperforms the state of the art in terms of faithfulness to
the original material, as validated through a psychophysical
evaluation done specifically for cinema using a digital cinema
projector. The proposed GEA is capable of adapting itself
according to the content of input images and aims to minimize
distortions in hue, chroma and saturation. Another finding is
that existing error metrics are not suitable for the GE problem,
since their scores do not correlate with the results of the
psychophysical experiments.

II. RELATED WORK

In general, GEAs are classified into two broad categories:
global GEAs, that modify colors regardless of the pixel
locations having those values, and local GEAs, which modify
pixel values taking into account their local neighborhoods.
Hoshino [19], [20] proposed pioneering global GEAs that
extend colors from the limited gamut printed images to the
color gamut of high-definition TV. Later, Kang et al. [21]
and Anderson et al. [5] presented user assisted methods to
deal with the problem of gamut extension. While all these
aforementioned algorithms treat each color without analyzing
the content of the input image, Pan and Daly [33], Casella

et al. [12], Heckaman and Sullivan [18] introduced methods
that first classify the colors of the input image according to
some criterion and then extend them. In particular, the work
of [33] labels each color of a given image as skin or non-
skin, [12] deals with objects of low chroma and high chroma
differently, and [18] identifies certain memory colors such as
green grass and blue sky, and renders them independently.
Kim et al. [22] described a GEA with three type of extension
strategies: chroma mapping, mapping along lines from the
origin, and adaptive mapping that is a compromise between
the first two strategies. Current state of the art global GEAs
are those presented by Laird et al. [24] and they are explained
in more detail in section IV-C as we use these algorithms to
compare with the results of our GE algorithm.

Local GEAs are adaptive in nature and take into account the
spatial color information of the original image during gamut
expansion. This property certainly makes them flexible but at
the same time far more complex and computationally expensive
than global GEAs. Li et al. [26] presented a multilevel
framework where first a non-linear hue-varying extension
function is applied globally to expand the color gamut of the
input image. Then in the second stage they make use of image
dependent chroma smoothing to avoid over-enhancement of
contrast and to retain the local information of the input image
in the final reproduced image. Zamir et al. [41] proposed a
spatial GEA that performs contrast enhancement using the
perceptual variational color correction model [9] to expand the
colors of an input image to a device gamut.

Gamut mapping algorithms can be evaluated either psy-
chophysically or by using image quality metrics. The most
common psychophysical method is the pair comparison, where
two different gamut-mapped versions of an original image
are shown to observers in isolation or alongside the original
image. Observers are then asked to select the gamut-mapped
image which exhibits more of the property (pleasantness,
naturalness, or accuracy) being evaluated. In the case of GEAs,
this procedure was used in Mujis et al. [31], and Laird et al. [24].
The latter described the psychophysical experiments to assess
the performance of GEAs using simulated and actual wide-
gamut displays. The alternative of the subjective experiment
is to use objective quality metrics that are capable of finding
specific distortions in reproduced images. There exists a vast
variety of image quality metrics [6], [7], [13], [27], [28] in
the literature that could in principle be used to quantify the
results of GEAs; a few are perceptually-based. Hardeberg et al.
[17] and Baranczuk et al. [6] presented psychophysical studies
where they identify the best performing image quality metric
for the gamut reduction problem. It is important to note that
the ranking of color metrics for gamut reduction may not be
consistent in the context of gamut extension if the metrics
are not trained to predict well the distortions found in gamut
extended images.

III. DISTORTION-BASED ITERATIVE GAMUT EXTENSION

A. Previous Approach: One-Shot Gamut Extension

In this section we briefly explain our previous work [42] on
GE that we extend to develop the new GEA in this paper. In
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Fig. 2: Gamut extension approach. (a) Gamuts on chromaticity diagram. (b) Gamut extension results. From left to right: input
image (γ = 0), gamut extended image with γ = 0.17, γ = 0.23 and γ = 0.35. As the γ value increases the gamut becomes
larger; notice the increment in saturation of helmets, socks, ski suits and shoes. Original image is courtesy of Kodak.

order to expand the colors from a smaller source gamut to a
larger destination gamut, the algorithm of [42] adapts the image
energy functional of Bertalmı́o et al. [9] that complies with
some basic global and local perceptual properties of the human
visual system and is closely related to the Retinex theory of
color vision [25]. The authors present in [42] an adapted image
energy functional

E(I) =
α

2

∑
x

(I(x)− µ)
2

+
β

2

∑
x

(I(x)− I0(x))
2

− γ

2

∑
x

∑
y

w(x, y)|I(x)− I(y)|, (1)

whose minimization produces an image with extended gamut.
In Eq. (1) α, β and γ are constant and positive weights, I is a
color channel and has a range [0, 1], µ is the average value of
each channel of the original image I0, w(x, y) is a normalized
Gaussian kernel of standard deviation σ, and I(x) and I(y)
are two intensity levels at pixel locations x and y respectively.

By minimizing the image energy in Eq. (1) the aim is to
maximize the contrast (third term of the functional), while not
departing too much from the original image (second term) and
also preserving the gray world hypothesis (first term). It is
formulated in [9] that the solution to the minimization of Eq.
(1) can be found as the steady state of the evolution equation

Ik+1(x) =
Ik(x) + ∆t

(
αµ+ βI0(x) + γ

2RIk(x)
)

1 + ∆t(α+ β)
(2)

where the initial condition is Ik=0(x) = I0(x). The function
RIk(x) indicates the contrast function:

RIk(x) =

∑
y∈I w(x, y)s

(
Ik(x)− Ik(y)

)∑
y∈I w(x, y)

(3)

where x is a fixed image pixel and y varies across the image.
The slope function s() is a regularized approximation to the
sign function, which appears as it is the derivative of the
absolute value function in the third term of the functional; in
[9] they choose for s() a polynomial of degree 7.

To perform gamut extension, Zamir et al. [42] first convert
the RGB input image to the CIELAB color space, and then

maximize the contrast of only chromatic components ‘a’ and
‘b’ using Eq. (2). To show how the evolution Eq. (2) extends
the color gamut, an example with several different gamuts
(visible spectrum, source gamut, target gamut and reproduced
gamut) on a chromaticity diagram is shown in Fig. 2a. It is
important to recall from [42] that for each set of values for α,
β, and γ the evolution Eq. (2) has a steady state. For example,
it is shown in Fig. 2a that when β = 1, α = 0, and γ = 0 we
obtain the original image as the steady state of the evolution
equation. Moreover, it can be seen in the same figure that as
we increase γ the steady state of Eq. (2) has a gamut which
is gradually larger. Fig. 2a also shows that the colors of the
source gamut can be expanded to the destination gamut just
by using a large enough value for γ (γ = 0.35 in this case).
And to select an adequate γ value, the authors of [42] keep
increasing the γ value and running evolution Eq. (2) to steady
state until the gamut of the input image exceeds the target
gamut up to a certain threshold T . This threshold T defines
a stopping criteria according to which if T% pixels of the
original image move out of the target gamut we should stop
performing extension. Additionally, the threshold T controls
the amount of saturation; a large value of T provides a higher
level of saturation, whereas a small value of T produces a
less saturated output. For each γ value, the corresponding
reproductions are shown in Fig. 2b. After this, the colors that
were placed outside the target gamut in previous iterations are
mapped back inside using the gamut reduction algorithm [41].
Since the algorithm of [42] used a fixed value of threshold T
for all the images, their results were often off from the ground
truth. Moreover, the GEA of [42] causes hue shifts in some of
the reproductions.

B. Proposed Method

In this section we present a new method that, unlike our
previous GEA [42], works iteratively with added constraints
to perform gamut extension in terms of the contrast coefficient
γ. The general structure of our algorithm is as follows.

At each iteration, we run the evolution Eq. (2) for some
particular α, β, and γ (in the first iteration the values are β = 1,
α = 0, and γ = 0) until we reach the steady state. For each
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pixel of this steady state image we check that it simultaneously
satisfies three constraints on saturation, hue and chroma: if it
doesn’t, then the pixel is marked as “done” and subsequent
iterations will not modify its value (i.e. this pixel is now part
of the final output, the gamut extended image). We move to the
next iteration, by slightly increasing the value of γ and setting
α = γ

20 . We run again evolution Eq. (2) until steady state and
check whether any of the pixels violated any condition: those
pixels are left unmodified for the following iterations. We keep
repeating this process until the gamut of the original image
exceeds the destination gamut up to a threshold T , at which
point the iterations stop and all pixel values are final except
for colors that now lie outside the destination gamut: these are
mapped back inside using the gamut reduction algorithm [41].

In the following sections we describe in detail the constraints
that are checked after each iteration and the way the destination
gamut is constructed.

1) Constraints: These are the three constraints that pixels
must satisfy in order to continue with the iterative process,
otherwise we leave them untouched for the following iterations:
• Saturation Constraint: We define a condition to avoid

pixels from getting desaturated, therefore each pixel must
satisfy this constraint

Sae − Sbe > 0, (4)

where Sae and Sbe denote saturation after extension and
saturation before extension, respectively.

• Hue Constraint: The human visual system is highly
sensitive to the changes in hue, and one major goal in GE
is to produce images with unnoticeable hue shifts. In order
to make our GEA robust against unpleasant color shifts,
we make each pixel to comply with the hue constraint

|θae − θbe| < εh, (5)

where θae, θbe and εh represent hue angle after extension,
hue angle before extension and hue threshold, respectively.

• Chroma Constraint: One of the main challenges in GE
is that, after extension, colors of less saturated natural
objects, skin tones, and shades of memory colors may
appear too colorful and unrealistic. To deal with it, we
manually segment a set of images that contain shades of
sky and skin colors. We then define the crucial region on
the chromaticity diagram in such a way that it encloses the
chromaticity values of all the colors of these segments of
images. The crucial region is shown in Fig. 6, and colors
that fall inside this region should satisfy this chroma
condition

|Cae − Cbe| < εc, (6)

where Cae, Cbe and εc indicate chroma after extension,
chroma before extension and chroma threshold, respec-
tively.

We want to mention that the values of the parameters εh
and εc are of great importance; an example of an image with
smooth color gradients is shown in Fig. 3 where it is evident
that too small values of εh and εc produce an image with
noticeable artifacts, whereas for slightly larger values of εh
and εc the reproduction is free from false edges but may have

(a) Input image.

(b) Gamut extended image with εh = 5 and εc = 2.

(c) Gamut extended image with εh = 15 and εc = 4.

Fig. 3: Effect of parameters εh and εc. The red bounding boxes
indicate the regions where artifacts (false edges) appear.

hue shifts. Therefore, these values should be adjusted in a way
that the artifacts (false edges and hue shifts) stay below the
visibility level. In the experiment section we propose values
for these parameters that are suitable even for large differences
between source and destination gamuts.

2) Scaled Destination Gamut Computation: One of the prob-
lems in gamut extension is that the majority of GEAs are either
image dependent or perform well for a few combinations of
source and destination gamuts [30]. To reduce this dependency
issue, we compute a scaled version of the original image gamut
and use it as the destination gamut.

Given two points p0 and p1, the following parametric
representation describes the line passing through them

p = p0 + η(p1 − p0), (7)

where η is a scaling factor and η > 1 will provide a point p
on the line further from p0 than p1.

To obtain the scaled target gamut, given an original image I0
and a target gamut (TG), we first convert the image colors into
luminance (Y) and chromaticity values (x and y) [37]. Next
we calculate a reference point pr1 by taking the mean of those
chromaticity points (x and y) that make the two-dimensional
convex hull of the image I0. Both the reference point pr1 and
the convex hull of I0 are shown in Fig. 4a. We then define a set
of lines (L) by substituting the reference point p0 = pr1 and
each vertex of the convex hull of I0 as p1 in Eq. (7). Finally,
we generate new points (one from each line in L) using a same
value of scaling factor (η1 > 1) that is chosen in such a way
that none of the new points falls outside the TG and at least
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Fig. 4: Scaled destination gamut computation.

one of them touches the boundary of the TG as shown in Fig.
4a. Similarly, we calculate another scaling factor η2, but this
time using the mean of all chromaticity values of the image
as reference point pr2 and vertices of the convex hull of I0.

Once we have the scaling factors η1 and η2, we apply
them using Eq. (7) on the xyY triplets that make the three-
dimensional (3D) convex hull of the original image I0 (shown
in Fig. 4b) to obtain two 3D scaled gamuts. Note that these
two scaled gamuts, depicted in Fig. 4c, are obtained using
two reference points (pr1 and pr2); one of which is the mean
of the xyY points that make the 3D convex hull of the input
image, and the other is the mean of all xyY values of the
image. Finally, we create the final scaled destination gamut
by computing the intersection of both 3D scaled gamuts as
illustrated in Fig. 4c. An example with all the relevant gamuts
is shown Fig. 4d.

IV. QUALITATIVE EXPERIMENTS AND RESULTS

A. Methodology

One major goal of this paper is to investigate psychophysi-
cally the performance of GEAs in cinematic conditions using
a digital cinema projector (Barco DP-1200 [2]). A GEA must
respect as much as possible the artist’s vision, and in this sense
it is completely different from a process like colorization of
black and white pictures. In general, and not only in the case

of legacy material, there never is a ground truth. The original
material in a reduced gamut is all there is, and this material
has to have its gamut extended while preserving as much as
possible its original appearance. In our tests we actually have
a ground truth because for evaluation purposes we start from a
wide gamut material, reduce its gamut, extend it with a GEA
and then ask users to compare the result with the wide gamut
ground truth, but in general a wide-gamut ground truth is never
available. Nonetheless, by showing that a GEA performs well
as evaluated using ground truth data, we expect that it also
performs well when ground truth data is not available, which is
a most common approach in image processing (e.g. denoising
algorithms are evaluated in terms of PSNR by comparing with
a ground truth “clean” image that is never available in real
scenarios, segmentation algorithms are evaluated by comparing
their results to those of manual segmentations, etc.) One could
question the choice of evaluation criteria: why ask users to
choose the most accurate result instead of the one they find
most pleasant? The reason is that, for a GE technique to be
adopted by the movie industry, it must yield gamut extended
results that preserve as much as possible the artistic intent of
the content’s creator. Designing GEAs for pleasantness does not
guarantee this, usually quite the opposite: apart from general
inter-subject variability in terms of preference, there is also a
strong correlation between colourfulness and perceived image
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quality [14], so user tests based on subject preference would
rank higher those GEAs that increased color saturation even if
that implied a departure from a subdued color palette chosen
by the movie artist. User tests based on accuracy, on the other
hand, are much less subjective (as users are simply asked to
estimate differences with respect to the provided reference)
and the preservation of the artistic intent is in a sense “built-in”
in the procedure, since the ground truth acts as a stand-in for
the content’s creator intent.

We show all the stages of our experimental framework in
Fig. 5. The first task is to obtain both the wide-gamut ground
truth images and the limited gamut input images from the given
wide-gamut test images. The wide-gamut test images may have
colors that fall outside the gamut of our cinema projector,
therefore, to create the ground truth, we map the colors of the
test images to the gamut of the projector by using the state of
the art gamut reduction algorithm of Alsam and Farup [4]. All
the gamuts that are used in this paper are shown in Fig. 6, and
primaries are mentioned in Table I. It is important to note that
in our experiments we make use of a cinema projector that
has the same red and green primaries as those of the DCI-P3
standard but has a slightly different blue primary. Nonetheless,
both the DCI-P3 gamut and the projector’s gamut cover almost
the same amount of area on the chromaticity diagram as it
can be seen in Fig. 6. Therefore, we refer to the projector’s
gamut as DCI-P3 in the rest of this paper for the sake of
simplicity. Next, to create the gamut-limited input images, we
apply the gamut reduction method of [4]. Once we have the
input images ready, we apply to them our proposed algorithm
and four competing GEAs to generate reproductions for the
following two different experimental setups:

1) Mapping from small gamut to DCI-P3 gamut: as laser
displays with their extended gamut capabilities are
becoming popular, in the near future the common case
will be to have large color differences between the
standard gamuts and displays’ gamuts. Therefore, we
create this setup to investigate the behavior of GEAs
when the difference between source and target gamut
is large. To this end, we map the source images from
the small ‘Toy’ gamut (slightly smaller than the BT.709
gamut) to the large DCI-P3 gamut. On the chromaticity
diagram, the difference in gamuts for this setup is almost
equal to the difference between DCI-P3 and BT.2020.

2) Mapping from BT.709 to DCI-P3 gamut: in this setup we
mimic the practical situation where the source material
has BT.709 gamut and we map the source colors to the
colors of the DCI-P3 gamut.

Next we performed a subjective evaluation (for both experi-
mental setups) with 15 observers of which ten were male and
five female and their age was between 27 and 44 years, with
average of 32 years. All observers were tested for normal color
vision using the Ishihara color blindness test. To mimic the
lighting conditions of a real cinema, we created a low light
ambience where the illumination measured at the screen was
around 750 lux and the ambient illuminance was 1 lux. During
the experiment there was not any strong colored object in the
field of view of the observers. The glare-free screen used in
our experiments was 3 meters wide and 2 meters high. Each
observer was instructed to sit approximately 5 meters away
from the screen.

In the psychophysical experiments, we used a forced-choice
pairwise comparison technique where observers were shown
three images on the projection screen: the target gamut ground
truth image (in the middle) and a pair of reproductions (one
image on the left side and the other on the right side of the
ground truth). For both setups, observers were asked to make
selections according to the instructions: a) if there are any sort
artifacts in one of the reproductions, choose the other, and b) if
both of the reproductions have artifacts or are free from artifacts,
choose the one which is perceptually more closer to the ground
truth. Since there were 30 test images, 5 algorithms and 2
experimental setups, each participant had 600 comparisons to
judge in total, but to avoid fatigue, we split these comparisons
in four sessions that were conducted on four different days.
Although there was no time restriction to make choices, each
observer took approximately 30 minutes to complete one
session. Finally, we analyze the psychophysical data using
the work of Morovič [29], that is based on Thurstone’s law of
comparative judgement [39].

Moreover, in order to validate the robustness of the compet-
ing GEAs explicitly, 9 experienced observers (who belong to
the image processing community and participated in various
psychophysical studies) were shown a pair of images on the
projection screen; one of which was the ground truth and
the other was the reproduction. We asked them to examine
artifacts and hue shifts in the reproductions as compared with
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TABLE I: Primaries of gamuts.

Gamuts Red Primaries Green Primaries Blue Primaries
x y x y x y

BT.2020 0.708 0.292 0.170 0.797 0.131 0.046
BT.709/sRGB 0.640 0.330 0.300 0.600 0.150 0.060
DCI-P3 0.680 0.320 0.265 0.690 0.150 0.060
Projector 0.680 0.320 0.265 0.690 0.140 0.070
Toy 0.570 0.320 0.300 0.530 0.190 0.130

Fig. 7: Some of the wide-gamut images used in our tests. Note
that only the central part of the images is shown.

the originals.

B. Creation of Wide Gamut Test Images

To the best of our knowledge, there is not any publicly
available colorful wide-gamut dataset that can be used to assess
the performance of GEAs. Therefore, we create wide-gamut
images using a camera that is capable of capturing images in
raw format. Once we have raw images, we associate with them
the wide-gamut color space (ProPhoto RGB) to obtain true
color images in Adobe Lightroom. Along with the 21 images
shown in Fig. 7, we use 9 other test images that were from
movies such as ‘Amazing Spider-Man’, ‘127 Hours’, ‘Tangled’,
‘Rio’, and ‘Requisitos para ser una persona normal’.

C. Competing GEAs

The four state of the art GEAs [24] that we compare with
the proposed algorithm are briefly described as follows:

1) Same Drive Signal (SDS): The most commonly used GE
algorithm is the SDS [24], where the RGB primaries of the
input material are linearly mapped to the RGB primaries of
the display device enabling the SDS algorithm to make full
use of the wide-gamut of the display.

2) Hybrid Color Mapping (HCM): It is a combination of
the SDS algorithm and the true-color algorithm. The true-
color algorithm maintains the color information of the input
image into the destination gamut without applying any sort
of extension, meaning that the output of true-color is nothing
but a representation of the input image in a wide-gamut color
space: R

G
B


true−color

= M−1DestinationMSource

 R
G
B


Source

,

(8)
where both MSource and MDestination are 3×3 transformation
matrices to convert the values of RGB to XYZ color space.

The HCM algorithm [24] linearly combines the output of
the true-color and SDS algorithms based on the saturation of
the input image:

 R
G
B


HCM

= (1− κ)

 R
G
B


true−color

+ κ

 R
G
B


SDS

,

(9)
where κ is a mixing factor that works as a function of saturation:

κ(S) =


0, if S ≤ SL
S−SL

SH−SL
, if SL < S < SH

1, if S ≥ SH
(10)

SL and SH are constants to define the ranges of saturation for
the mixing function κ, and their values that we used in our
experiments are SL = 0.2 and SH = 0.6 for the setup 1, and
SL = 0.8 and SH = 1 for the setup 2. .

The key idea behind the HCM algorithm is to preserve
natural colors, leaving unmodified the low saturated colors
such as skin tones, while mapping highly saturated colors
using the SDS algorithm.

3) Chroma Extension (CE): The SDS algorithm works by
extending the input signal to the destination gamut. However,
hue differences between source and destination gamut may
lead SDS to produce an image that exhibits hue shifts. To
tackle this problem, the chroma extension algorithm proposed
in [24] maps colors of the source gamut to the reproduction
gamut along lines of the chroma axis in the CIELCH color
space, while keeping lightness and hue constant.

4) Lightness Chroma Adaptive (LCA): The lightness-chroma
adaptive algorithm [24] performs GE by altering both lightness
and chroma while keeping the hue constant.

Both CE and LCA algorithms make use of the so called high
chroma boost (HCB) function which smoothly maps colors
of an input image in a manner that the high chroma objects
get more boost in saturation than the low chroma ones. This
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Fig. 8: Accuracy scores using 15 observers and 30 images.
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Fig. 9: Percentage of reproductions in which 9 experienced observers noticed visual distortions.

approach aims to preserve memory color objects as they often
have less saturated values, and extends colors of artificial
objects (such as plastics) that have high chroma.

D. Settings for Proposed Method

We work in CIELAB color space and the parameter values
that we use in all our experiments are β = 1, εh = 15, εc = 4,
∆t = 0.10, T = 1% of the total number of pixels, and the
gamma increment of ∆γ = 0.01 between two consecutive
iterations. The proposed GEA in a non-optimized MATLAB
implementation running on a machine with 8 cores 3.4-GHz
CPU takes (on average) 4.5 minutes to process an image of
resolution 656× 1080 pixels.

E. Results

In order to compute the accuracy scores from the raw
psychophysical data, we use the data analysis procedure
presented in [29]. The analysis of psychophysical data of
the setup 1 presented in Fig. 8a shows that, when there is
a large difference among the source-target gamut pair, the
proposed GEA produces images that are perceptually more
faithful to the originals as compared with the other competing
algorithms. The observers declared LCA [24] as the least
accurate algorithm, whereas both the CE [24] and the HCM

[24] algorithms rank third and fourth, respectively. In Fig. 9, we
report the percentage of reproductions for which 9 experienced
observers, on average, noticed the visual distortions: artifacts or
hue shifts. For the setup 1, the LCA and CE algorithms produce
images with loss of texture due to over-saturation and it can be
seen in Fig. 9a that the subjects noticed artifacts in 25% of the
reproductions obtained using the LCA algorithm and in 12%
of the images in the case of the CE algorithm. The observers
confirmed that the proposed GEA produces images with very
low error rate, around 2%. One such example is shown in Fig.
10 where it is clearly visible that the colors reproduced by our
GEA are artifact free and perceptually more faithful to the
ground truth than those of LCA and CE algorithms. Moreover,
it can also be seen in the said figure that the LCA and CE
algorithms turn subtle spatial color details of the woman’s
apron into noticeable unpleasant color gradients. Even though
both the SDS [24] and HCM algorithms do not introduce much
noticeable artifacts, their reproductions show strong hue shifts.
We show an example in Fig. 11 where the hue shifts are evident
on the floor in the results of the SDS and HCM methods. Note
that the images depicted in Fig. 10 and Fig. 11 were in DCI-P3
format, originally. Since we are limited by sRGB standard (that
has the same primaries as of BT.709) for the paper, in order
to present results we show only those colors that are inside
the sRGB gamut and mask (in green) the rest of the colors.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10: Example of artifacts. (a) Ground Truth. (b) Output
of CE algorithm [24]. (c) Output of LCA algorithm [24]. (d)
Output of our GEA. (e)-(h) Zoomed-in view of the regions
cropped from the top row. Note that these are wide-gamut
images where out-of-sRGB pixels are masked green.

In Fig. 8b we show the results of setup 2 where it can be
seen that, when the difference between source and target gamut
is smaller, the ranking order of the GEAs changes dramatically.
The HCM algorithm that ranked as the second least accurate
in the previous setup becomes the most accurate method. Our
GEA shows comparable performance with the HCM algorithm.
Similar to the results of setup 1, the LCA algorithm produces
gamut extended images that are least faithful with the original
content. It is also evident from Fig. 8b that the SDS method,
unlike in setup 1, shows poor performance under setup 2. Fig.
9b shows that the SDS and HCM algorithms produce gamut
extended images with strong color shifts for 13.6% and 7%
of the input images, respectively. It can be seen in the same
figure that none of the competing algorithms produce images
with distinct visual artifacts for setup 2, in which there are
small color differences between source and target gamut.

Trends for both experimental setups show that the proposed
GEA is the most consistent and reliable method for both small
and large color differences among the source-target gamut pair.

1) Temporal Consistency Test: In order to examine the
temporal consistency of GEAs, we conducted a psychophysical
study with 9 experienced observers and two colorful image
sequences with different levels of motion. The representative
frames for both image sequences are shown in Fig. 12. In this
experiment, the gamut extended videos obtained using different
GEAs were shown in isolation (without any ground truth) to
each observer and they were asked to inspect the following
attributes: temporal color consistency (objects should retain
the same hue, chroma and brightness), global flickering, local
region flickering, and excessive noise. None of the observers
noticed any temporal artifacts, which supports our choice
to apply all competing GEAs on each frame independently.
Finally, we want to stress that the quality of the input video
is of high importance; if it contains any spatial artifacts due
to compression or noise they may become prominent in the
reproduced video.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11: Example of hue shifts. (a) Ground Truth. (b) Output
of SDS algorithm [24]. (c) Output of HCM algorithm [24]. (d)
Output of our GEA. (e)-(h) Zoomed-in view of the regions
cropped from the top row. Note that these are wide-gamut
images where out-of-sRGB pixels are masked green.

V. IDENTIFICATION OF ERROR METRIC SUITABLE FOR THE
GE PROBLEM

We would like to find out whether or not there exists an error
metric that is suitable for the gamut extension problem. First,
we examine the prediction quality of nine error metrics: CIE∆E,
CIE∆E94 [7], CIE∆E2000 [28], color image difference (CID)
[27], and the ones presented in [13] such as mean square error
(MSE), structural content (SC), maximum difference (MD),
Laplacian mean square error (LMSE) and normalized absolute
error (NAE). We test the efficiency of the GEAs for setup
1 and setup 2 using these error metrics, that find distortions
between ground truth and reproductions. We list the overall
error for all the images in Table II. There it can be seen that
for setup 1, only two out of nine error metrics selected the
observers’ preferred GEA (our proposed algorithm) as the best
performing algorithm. Both the LCA and the HCM algorithms
were chosen as the most accurate methods by three different
error metrics, whereas none of the tested metrics picks SDS
as a good performing method: all these results contradict the
findings of the psychophysical experiment.

For setup 2, five out of the nine error metrics tested declare
HCM as the most efficient algorithm, which is consistent with
the results of the psychophysical experiment. However, the
same image quality metrics rank other GEAs very differently
as compared with the observers’ choices. Another notable
finding is that the CIE∆E metric and its variants (CIE∆E94
and CIE∆E2000) show a similar trend and pick LCA and
HCM as the most efficient algorithms for setup 1 and setup 2,
respectively.

Even tough some error metrics were able to make right
predictions, we check the correlation between the choices
made by our observers in the psychophysical experiments and
the predictions of the error metrics to confirm the reliability of
these image metrics. To achieve this, we use the hit rate (h)
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(a) Image sequence 1

(b) Image sequence 2

Fig. 12: Representative frames of image sequences with toy gamut.
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Fig. 13: Hit rates obtained by image quality metrics for experimental setups.

TABLE II: Predictions of image quality measures: error across all images.

Error Metrics Setup 1: Toy to DCI-P3 gamut Setup 2: BT.709 to DCI-P3 gamut
SDS HCM Chroma LCA Our GEA SDS HCM Chroma LCA Our GEA

CID 0.0903 0.0858 0.0862 0.1013 0.0987 0.0645 0.0624 0.0658 0.0657 0.0681
∆E 0.1926 0.1766 0.1636 0.1396 0.1796 0.1603 0.1401 0.1679 0.1680 0.1896
∆E94 0.2941 0.2684 0.2527 0.2203 0.2766 0.2203 0.1927 0.2141 0.2142 0.2194
∆E00 0.3058 0.2802 0.2489 0.2315 0.2670 0.2302 0.2037 0.2317 0.2301 0.2326
MSE 0.0060 0.0059 0.0109 0.0144 0.0116 0.2034 0.2192 0.1318 0.1317 0.1205
SC 0.6157 0.6052 0.5449 0.5212 0.5037 0.4885 0.4933 0.5268 0.5269 0.5209
MD 0.3442 0.3435 0.5096 0.5853 0.4393 0.3698 0.3172 0.3644 0.3651 0.2586
LMSE 0.3133 0.3154 0.2361 0.3124 0.2093 0.2034 0.2192 0.1318 0.1317 0.1205
NAE 0.1005 0.0967 0.0953 0.0977 0.1031 0.0636 0.0503 0.0748 0.0747 0.0640

approach that is defined as

h =
c

N
(11)

where N is the total number of choices for any experimental
setup and c is the number of correctly predicted choices. We
operate on the raw visual data, and as we know the choice of
the observer for each paired comparison in the psychophysical
experiment, we consider a choice is correctly predicted if an
image quality metric gives less error for the image selected
by the observer. Any quality measure that makes random
predictions is expected to achieve a hit rate of h = 0.5.
Since each image pair is compared by several observers and
considering that not all of them have made the same choice,
we computed the maximum achievable hit rate to which an

error metric will approach if its predictions are in agreement
with the majority of observers’ choices for all image pairs.

Since our purpose is to find a metric that works for both
small and large color differences between source and target
gamuts, in Fig. 13 we present the hit rates to validate the image
quality metrics for both setup 1 and setup 2. It can be seen that
the error metrics made, most of the time, random predictions
and their hit rates are significantly lower than the maximum
achievable hit rate. Note that if an error metric has a very
low hit rate (i.e. less than 0.2), one can make it a good image
quality measure by inverting its predictions for all image pairs.
However, none of these metrics achieves either a very low hit
rate or a very high hit rate and therefore they are unreliable to
be used for evaluating results in the gamut extension problem.



IEEE TRANSACTIONS ON IMAGE PROCESSING 11

Without an efficient error metric, gamut extension cannot be
posed as an optimization scheme as in [32], [36] where, given
a reference image and its gamut mapped version, the idea is
to alter the gamut mapped image to minimize the distortions
as computed by an objective metric. Consequently, it leaves us
with only one option for the moment to validate GEAs, that is
to perform subjective studies which are cumbersome and time
consuming.

VI. CONCLUSION

In this paper we have proposed a perception-based iterative
GEA that adapts itself according to the content of the input
image and produces gamut extended images that are free
from visual distortions, natural in appearance and perceptually
faithful to the original material. Moreover, we have presented
a psychophysical study to investigate the quality of the results
produced by the proposed algorithm and four other GEAs under
cinematic conditions using a cinema projector. The analysis of
psychophysical data shows that our algorithm outperforms the
competing methods when the difference between source and
destination gamuts is large (setup 1), whereas the results of
the proposed GEA are comparable with the best performing
algorithm (HCM) when the source-destination gamut pair
has smaller differences in colors (setup 2), but our method
produces much less artifacts than HCM. Although setup 2 is
more common right now, setup 1 will become highly relevant
with the popularization of new laser projectors. Finally, we
tested the prediction quality of various image quality metrics
in order to identify a suitable image measure for the GE
problem. We concluded that none of the test metrics show any
useful correlation with the psychophysical choices made by
the observers.
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[6] Z. Barańczuk, P. Zolliker, and J. Giesen. Image quality measures for
evaluating gamut mapping. In Color and Imaging Conference, pages
21–26, 2009.

[7] R. S. Berns. The mathematical development of CIE TC 1-29 proposed
colour difference equation: CIELCH. In Proc. of the Seventh Congress
of International Colour Association, B, C19.1C19.4, 1993.

[8] M. Bertalmı́o. Image Processing for Cinema, volume 4. CRC Press,
Taylor & Francis, 2014.

[9] M. Bertalmı́o, V. Caselles, E. Provenzi, and A. Rizzi. Perceptual color
correction through variational techniques. IEEE Transactions on Image
Processing, 16(4):1058–1072, 2007.

[10] ITU-R Recommendation BT.2020. Parameter values for ultra high
definition television systems for production and international programme
exchange, 2012.

[11] ITU-R Recommendation BT.709-5. Parameter values for the HDTV
standards for production and international programme exchange, 2002.

[12] S. E. Casella, R. L. Heckaman, and M. D. Fairchild. Mapping standard
image content to wide-gamut displays. In Color and Imaging Conference,
pages 106–111, 2008.

[13] A. M. Eskicioglu and P. S. Fisher. Image quality measures and their
performance. IEEE Transactions on Communications, 43(12):2959–2965,
Dec 1995.

[14] E. A. Fedorovskaya, H. de Ridder, and F. JJ Blommaert. Chroma
variations and perceived quality of color images of natural scenes. Color
research & application, 22(2):96–110, 1997.

[15] E. François, C. Fogg, Y. He, X. Li, A. Luthra, and C Segall. High
dynamic range and wide color gamut video coding in HEVC: Status
and potential future enhancements. IEEE Transactions on Circuits and
Systems for Video Technology, 26(1):63–75, 2016.

[16] J. Froehlich, T. Kunkel, R. Atkins, J. Pytlarz, S. Daly, A. Schilling, and
B. Eberhardt. Encoding color difference signals for high dynamic range
and wide gamut imagery. In Color and Imaging Conference, pages
240–247, 2015.

[17] J. Y. Hardeberg, E. Bando, and M. Pedersen. Evaluating colour image
difference metrics for gamut-mapped images. Coloration Technology,
124(4):243–253, 2008.

[18] R. L. Heckaman and J. Sullivan. Rendering digital cinema and broadcast
TV content to wide gamut display media. SID Symposium Digest of
Technical Papers, 42(1):225–228, 2011.

[19] T. Hoshino. A preferred color reproduction method for the HDTV
digital still image system. In Proc. of IS&T Symposium on Electronic
Photography, pages 27–32, 1991.

[20] T. Hoshino. Color estimation method for expanding a color image for
reproduction in a different color gamut, May 1994. US Patent 5,317,426.
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