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Abstract. Gamut mapping transforms colors of the original (image or video) content to the color palette 
of the display device with the simultaneous goals of (a) reproducing content accurately while preserving 
the artistic intent of the original content’s creator and (b) exploiting the full color rendering potential of 
the target display device. The rapid advancement in display technologies has created a pressing need 
to develop automatic and fast gamut mapping algorithms that can deal with imagery intended for both
conventional and emerging displays. In this paper, we propose a novel framework based on retinal 
and color perception models from vision science that offers a functionality to perform both gamut 
reduction and gamut extension, while preserving hue and taking into account the analysis of the colors 
of the input image. We evaluate the performance of the proposed framework visually and by using a 
perceptually-based error metric, according to which the gamut-mapped results of our framework 
outperform those of the state-of-the-art methods. 
Keywords. Gamut mapping, wide color gamut, color reproduction, gamut mapping algorithms.  
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Introduction 
For the past several decades, the primary focus of both cinema and television (TV) industries is 
in the improvement of image/video quality features such as spatial resolution, temporal resolution 
(frame rate), contrast and colors. However, it is only due to the recent technological 
breakthroughs, that manufacturers are able to introduce to the marketplace new flat-panel TVs 
and digital cinema projectors which are capable of generating high contrast and reproducing wide 
range of colors; thus providing users a visual experience closer to reality.   
 
Owing to the trichromacy property of human vision, virtually all display devices work in the 
following manner: they mix three well chosen red, green and blue color primaries in different 
proportions to generate different colors. The range of colors that a device is able to reproduce is 
called its color gamut. Although a 3D color volume is a more complete way to describe the actual 
color palette that a device can reproduce, for the sake of simplicity it is a common practice to 
decouple luminance from the chromatic content referred as chromaticity and show only the 
chromatic content on a 2D plane. Figure 1 shows the standard CIE xy chromaticity diagram, where 
the horseshoe-shaped region corresponds to the chromaticities of all the colors that a standard 
observer can perceive. Practically all commercially available displays have a triangle-shaped 
gamut in the CIE xy chromaticity diagram due to the use of three color primaries. Therefore, they 
are unable to reproduce many colors that we can see.  
 
Different display devices can have different gamuts depending on the set of color primaries they 
use. This posses a serious problem as we cannot create image content differently for all these 
different display devices. To tackle this challenge, there exist some standard color gamuts: DCI-
P3 gamut is used in cinema industry and BT.709 gamut is for HDTVs, broadcasts, online 
streaming, etc.; both of these gamuts are shown in Figure 1. Displays receive input signals with 
standard color gamuts, but each display has to “fit” the gamut of the incoming content to its native 
color gamut by using an automated procedure called gamut mapping (GM). GM transforms colors 
of a source material to the colors of a target device. Generally there exist two possibilities for 
gamut mapping1: if the source gamut is larger than the target gamut, gamut reduction (GR) is 
needed2-8 and if the source gamut is smaller than the target gamut, the process of gamut 
extension (GE) is desired9-13. 
 
Gamut mapping is also needed on the image capture side. There exists various consumer and 
professional movie cameras that are capable of capturing content with different range of colors. 
Although high-end cameras provide an option to save content in RAW format and process it 
offline, most cameras have to yield content with standard gamuts on the fly. Reproducing content 
offline is not even feasible in some cases such as in live TV broadcasts and in low budget movie 
productions, hence GM is carried out within the camera. 
 
In the cinema industry, colorists at the postproduction stage make color and contrast adjustments 
in the movie to improve storytelling. Once the artistic signature is added, the colorist has to create 
two movie grades for distribution: one with the DCI-P3 gamut for cinema viewing and the other 
with the BT.709 gamut for HDTV viewing. Now with the introduction of very wide BT.2020 
standard (shown in Figure 1), it is foreseeable that in the near future colorists will have to create  
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at least three movie grades. Therefore, it makes gamut mapping very desirable in the cinema 
industry too.  
 

Perceptually-based Gamut Mapping Framework 
In the CIE xy chromaticity diagram, the least saturated colors are near x = y = 0.3 and as we move 
away from this point, colors become more and more saturated. In HSV (H for hue, S for saturation 
and V for value) color space, the goal of gamut reduction can be posed as reducing saturation 
and the goal of gamut extension is related to increasing saturation. (The method to transform 
RGB images into HSV color space can be found in Appendix.) Following the works14,15 that are 
based on retinal and color perception models, in this paper we express gamut mapping as a 
convolution of a kernel (𝐾) with the saturation component (𝑆0) of the input image plus a constant-
valued image (𝑃):  
 
                                                                       𝑆𝑖 = 𝑆0 ∗ 𝐾 + 𝑃                                                                     (1)  
where 𝑆𝑖 is an interim saturation image and the symbol ∗ denotes the classical convolution 
operation. All the pixel values of the constant-valued image 𝑃 are set to the product of the mean 
value of the input saturation channel 𝑆0 and the mean value of the kernel (𝐾). Meanwhile the 
kernel 𝐾 is computed as: 
 

                                                       𝐾 = ℱ−1 (
1

(𝛼 + 𝛽 − 𝛾) + 𝛾ℱ(𝜔)
)                                                  (2)  

where ℱ is a Fourier transform operation, 𝜔 is a Gaussian kernel with standard deviation 𝜎, and 
𝛼 and 𝛽 are positive constants. 𝛾 is a positive constant in the case of gamut extension and it is 
negative for gamut reduction. For the purpose of illustration, we show the shape of kernel 𝐾 for  

Figure 1. Standard gamuts on CIE xy chromaticity diagram. 
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gamut extension and for gamut reduction in Figure 2a and Figure 2b, respectively. It can be 
noticed that in the case of gamut extension the kernel 𝐾 has a tendency to increase the contrast 
of the input image, whereas in the case of gamut reduction it averages the image values, therefore 
decreases the contrast.  
 
In gamut extension the goal is to increase image saturation (using 𝛾 >  0); since our method works 
by increasing contrast, it may end up decreasing the saturation of some image pixel values. 
Similarly, the goal of gamut reduction is to decrease image saturation (using 𝛾 <  0); since in the 
case of gamut reduction our method works by decreasing contrast, it may end up increasing the 
saturation of some pixels of the input image. Both of these aforementioned behaviors are 
undesirable, therefore once we have the interim image 𝑆𝑖, we apply to it a threshold operation 
which is 𝑆𝑓  =  max(𝑆0,𝑆𝑖) in the case of gamut extension (to avoid pixels from getting 
desaturated), and 𝑆𝑓  =  min(𝑆0,𝑆𝑖) in the case of gamut reduction (to avoid pixels from getting 
saturated). 
 
It is important to mention that the aforementioned procedure is sufficient to perform gamut 
mapping: both gamut reduction and gamut extension. However, it can be helpful in improving 
results for gamut reduction and gamut extension if the following particular (but optional) 
operations are used. (Let us note that all the results provided in this paper are also obtained by 
using the following added steps.) 
 
 

(b) (a) 

Figure 2. Examples of kernel (𝐾): (a) for gamut extension, i.e. when 𝛾 >  0, and (b) for gamut 
reduction, i.e. when 𝛾 <  0. 
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Natural-Tones Preserving Gamut Extension 
In gamut extension, certain colors require a special treatment such as skin tones, less saturated 
natural objects, neutral colors and some particular memory colors. To incorporate such 
functionality in the main gamut mapping framework, the saturation image (𝑆𝑓) obtained after 
threshold operation is linearly combined with the saturation channel of the input image (𝑆0) as: 
 
                                                               𝑆𝑓𝑖𝑛𝑎𝑙  =  𝜏(𝑆0)𝑆0 + (1− 𝜏(𝑆0))𝑆𝑓                                                         (3) 

where the weighting function 𝜏( ) takes as an argument the saturation of the input image (𝑆0) and 
associates weights with the pixels of the image in order to treat low-saturated and high-saturated 
pixels differently (as shown in Figure 3), and the function 𝜏( ) is computed as:
 

                                                          𝜏(𝑆0(𝑥)) =  1−
1

(1 + 0.55𝑒−1.74𝑆0(𝑥))
2                                                    (4) 

 Where 𝑥 is the pixel location.  
 

Iterative Gamut Reduction 
When the value of 𝛾 parameter is negative for the Kernel (𝐾) in Eq. (2), our gamut mapping 
framework behaves as a gamut reduction procedure and yields reduced-gamut output images. 
However, even better results can be obtained by making the same procedure work in an iterative 
manner as follows. At iteration level one, we run Eq. (1) by using 𝛼 = 0, 𝛽 = 1 and 𝛾 = 0 and 
check if there are some pixels that lie inside the destination gamut. If yes, we mark these pixels 
as a part of the final reduced-gamut image and these values will not be modified in subsequent  

Figure 3. Weighting function 𝜏( )  to give weights to each pixel of the input image. 
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iterations. We move to the next iteration and perform gamut reduction procedure again but now 
with a kernel (𝐾) where the value of 𝛾 has been decreased (for instance, the decrement in 𝛾 value 
can be 0.05, and setting 𝛼 =

|𝛾|

20
). Again we find those pixels that were out-of-gamut in the previous 

iteration but now moved inside the destination gamut, we make these pixels a part of the final 
image and would not modify them in the following iterations. This iterative process continues until 
all the out-of-gamut colors are mapped inside the destination gamut. 
 

Experiment and Results 
In this section we present results both for gamut extension and gamut reduction. We first convert 
the input RGB image into HSV color space and then apply our method only on the saturation 
component, while keeping both hue and value components constant. 

Evaluation of Gamut Extension Algorithms (GEAs) 
To extend the color gamut of an image using Eq. (3), we have used the following set of 
parameters: 𝛽 =  1, 𝛾 =  0.25, 𝛼 =

|𝛾|

20
, and the standard deviation 𝜎 for Gaussian kernel 𝜔 is set 

to one-third of the number of rows or columns of the input image (whichever is larger). In order to 
compare the performance of different GEAs, we perform mapping from a smaller ‘Toy’ gamut to 
a larger BT.709 gamut. Color primaries for both of these gamuts are mentioned in Table 1. We 
compute results using our GEA and the following four methods of Laird et al.12: 

 Same drive signal (SDS) method linearly maps the RGB primaries of the source gamut 
to the RGB primaries of the destination device gamut; 

 Hybrid color mapping (HCM) algorithm combines the input image with the output of SDS 
method; 

 Chroma extension method extends the chroma of the input image while keeping both 
hue and lightness constant; 

 Lightness chroma adaptive (LCA) algorithm performs extension by modifying both 
chroma and lightness of the input image without changing the hue.    

 
Figure 4 presents the results of competing GEAs, where it can be seen that the images produced 
by our GEA are perceptually more faithful to the original images (first column) than the other  

Table 1. Primaries of gamuts. 
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methods12. Particularly, notice in row 1 that the reproduction of skin tones (which is always a key 
issue in movie postproduction) is more accurate in the case of our GEA (sixth column) than other 
competing GEAs. For instance, the SDS method performs excessive color extension and 
therefore ends up rendering flesh tones poorly (see third column); similar tendency can be 
observed in the results of chroma extension method (fourth column) and LCA algorithm (fifth 
column).  
 
We present in Figure 5 some close-ups (taken from Figure 4) for a better comparison. The LCA 
algorithm modifies chroma as well as lightness of the input image and yields an output image with 
enhanced contrast. This enhancement of contrast may produce artifacts and cause some pixels 
to go towards black (loss of saturation and spatial detail); as an example, see the lamp and 
alphabet in row 1 of Figure 5. Rows 3 and 4 of the same figure show that the chroma extension 
method gives an excessive boost to the chroma of the input image and produces an over-
saturated result. One can see in row 4 of Figure 5 that our method applies a small amount of 
extension to low-saturated objects, while extending high saturated colors normally. This is a very 
useful property to preserve colors of natural objects and providing a special treatment to skin 
tones, neutral colors and some particular memory colors. Since SDS algorithm contributes in the 
result of HCM algorithm, the HCM algorithm may produce over-saturated images if the 
contribution from SDS method is high; for instance, see row 4 and second column of Figure 5.   
 
The gamut extension results presented in this paper are obtained using a fixed value of 𝛾 
parameter in Eq. (2), which implies that in some cases the proposed GEA may not provide optimal 
images: they may be under-enhanced if the value for 𝛾 is too small or over-enhanced if the 𝛾 
value is too large, see for example Figure 6. Therefore there is a need to devise a method for 
making adjustment in 𝛾 value by taking into account the content of input image and the difference 
between the source and target gamuts, and we leave this as a future work.    
 
 
 

Figure 4. Reproductions of GEAs. Column 1: input images. Column 2: HCM. Column 3: SDS  
Column 4: Chroma extension. Column 5: LCA. Column 6: Our GEA. Original images are 

from the datasets16,17. 
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Evaluation of Gamut Reduction Algorithms (GRAs) 
To obtain the reduced-gamut images, we map the colors of BT.709/sRGB images to a smaller 
‘Toy’ gamut. We apply the proposed GRA on the saturation channel of the input images by using 
the following parameter values in Eq. (1): 𝛽 =  1, 𝛼 =

|𝛾|

20
, and the standard deviation 𝜎 for 

Gaussian kernel 𝜔 is equal to one-third of the number of rows or columns of the input image 

Figure 5. Comparison of GEAs: crops are from Figure 4. Column 1: input images. Column 2: 
HCM. Column 3: SDS  Column 4: Chroma extension. Column 5: LCA. Column 6: Our GEA.  

Figure 6. Effect of 𝛾 parameter on gamut extension. Left: ground truth image. Middle: under-
enhanced result when 𝛾 value is too small (𝛾 = 0.1). Right:  over-enhanced result when 𝛾 

value is too large (𝛾 = 0.5). Note that these specific 𝛾 values produce under and over 
enhanced results only for this particular image but they may yield perceptually faithful results 

for other images.    
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(whichever is larger). It is important to recall that our GRA is iterative in nature, and between each 
iteration we decrease the gamma value by making a change of Δ𝛾 =  0.05. For the purpose of 
evaluation, results are computed by using the proposed GRA and the following four methods:  
 

 LCLIP method3 clips the chroma of out-of-gamut colors to the destination gamut boundary 
along lines of constant hue and lightness; 

 POSTCLIP algorithm18 first uses a 3 x 3 linear matrix to transform colors of the input image 
to the color gamut of the destination device. Then it clips those values that fall outside the 
extremes of the coding range; 

 HPMINDE (Hue Preserving Minimum ΔΕ) method2 involves clipping of the out-of-gamut 
color to the closest color, in terms of ΔΕ error, on the boundary of destination gamut along 
lines of constant hue; 

 Schweiger et al.4 make use of a compression function that squeezes colors near the 
destination gamut boundary in order to accommodate the out-of-gamut colors. 
 

Figure 7 shows some visual examples of image reproduction quality of some GRAs, where it can 
be observed that the images produced by our GRA are perceptually more faithful to the original 
images (first column) than those of the other methods. It is noticeable in the same figure that the 
proposed GRA is capable of  preserving hues and retaining spatial detail better than the other 
competing GRAs. Particularly, notice in the close-ups shown in Figure 8 that HPMINDE2 (fourth 
column) introduces artifacts in the reproduced images because it may project two nearby out-of-  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Reproductions of GRAs. Column 1: input images. Column 2: LCLIP3. Column 3: 
POSTCLIP18. Column 4: HPMINDE2. Column 5: Schweiger et al.4. Column 6: Our GRA. The 
original image in the last row is from the CIE report22, while rest of the input images are from 

Kodak dataset21. 
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gamut colors to far-away points on the destination gamut. Moreover, the HPMINDE algorithm 
often yield images with loss of texture, as it can be observed in rows 1 and 4 of Figure 8. The 
methods of LCLIP3 (second column) and Schweiger et al.4 (fifth column) may produce results with 
excessive desaturation in bright regions, as shown on the close-ups of the helmet and on the 
neck of the yellow parrot. POSTCLIP18 may cause noticeable hue shifts in some images: see for 
example third column of both row 1 and row 4 of Figure 8.  In the example of the second row of 
Figure 8, all tested GRAs except the proposed one produce tonal discontinuities on the face of 
the woman. 
 
Zamir et al.19 showed that the current image quality metrics, when applied to the gamut extension 
problem, provide results that do not correlate well with users’ choices. Which is why, in this paper 
we are providing quantitative results only for the gamut reduction algorithms. For this, we use a  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 8. Comparison of GRAs: crops are from Figure 7. Column 1: input images. Column 2: 
LCLIP3. Column 3: POSTCLIP18. Column 4: HPMINDE2. Column 5: Schweiger et al.4. 

Column 6: Our GRA. 
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perceptual color image difference (CID) metric20 which is particularly tailored to assess the quality 
of gamut reduction results. The CID metric compares the gamut-mapped image with the reference 
(original) image and analyzes differences in several image features such as hue, lightness, 
structure, chroma and contrast. We apply the competing GRAs on all 24 images of Kodak 
dataset21 and on 7 other commonly used images in gamut mapping evaluation22,23. In Table 2 we 
summarize the mean errors where it can be seen that our GRA outperforms other methods. 
 
As mentioned before, the method presented in Eq. (1) is capable of reducing the gamut of a given 
input image. However, this one-shot method will affect not only the out-of-gamut pixels but also 
those pixels that are already inside the target gamut, therefore yielding an output image with 
significantly reduced saturation. To deal with this issue, we make use of the proposed GRA in an 
iterative manner, which leaves in-gamut pixels unmodified and therefore providing more saturated 
results. However, this improvement in quality comes at the cost of more computational time. This 
trade-off between quality and speed is depicted in Figure 9.  
 

Conclusion 
We presented a gamut mapping framework that offers a functionality to perform both gamut 
reduction and gamut extension. The proposed framework is based on retinal and color perception 
models from vision science, and it produces results that are visually faithful to the original content. 
Moreover, the evaluation performed by using the perceptual CID metric showed that the results 
of our GRA are more similar to the original images than those of other competing methods. The 

 LCLIP3 POSTCLIP18 HPMINDE2 Schweiger et al.4 Our GRA 

Mean Error 0.0225 0.0336 0.0491 0.0243 0.0165 

Table 2. Quantitative assessment using CID20: mean error across 31 images from21-23. 

Figure 9. One-shot versus iterative GRA: a trade-off between quality and speed. Left: input 
image. Middle: output of one-shot GRA obtained in 0.58 seconds. Right: output of iterative 
GRA obtained in 1.47 seconds.  It can be seen that the colors reproduced by the iterative 

GRA are more saturated than those of one-shot GRA. 
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proposed gamut mapping algorithms are reliable and fast, and therefore have a great potential to 
be implemented in movie postproduction suites, in cameras, in display devices, and in 
simultaneous UHDTV and HDTV broadcasts.  
We are currently working on automating the computation of the gamma parameter and optimizing 
the method in terms of speed, for instance by minimizing the number of iterations needed in the 
GR case. Moreover, we are exploring the effect of applying our methods on the saturation 
component computed in several different ways in the literature. We are also aiming to conduct 
psychophysical studies in order to evaluate the results for gamut reduction and gamut extension 
by using different displays (cinema projector, TV, and computer monitor) in different lighting 
conditions (cinema, home and office). All the examples in this paper have been obtained by 
running a non-optimized MATLAB implementation on a Desktop PC (12 cores 3.4-GHz CPU, 
32GB RAM) so there is much room for improvement.  
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Appendix 
One can transform RGB images into HSV color space by using the following set of equations24: 
 

𝑀 =  max(𝑅,𝐺,𝐵) 

𝑚 =  min(𝑅,𝐺,𝐵) 
𝐶 =  𝑀 −𝑚 

𝐻′ =  

{
  
 

  
 

undefined,                      if C = 0  

 
𝐺 − 𝐵
𝐶

 𝐦𝐨𝐝 6,               if 𝑀 = 𝑅 

𝐵 − 𝑅
𝐶

+ 2,                       if  𝑀 = 𝐺

𝑅 − 𝐺
𝐶

+ 4,                     if 𝑀 = 𝐵

 

𝐻 =  60° x 𝐻′ 

𝑆 =  
𝑀 −𝑚
𝑀

 

𝑉 =  𝑀 
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